Abstract:
A composition comprising microcapsules, the microcapsules containing both live mammalian ovarian granulosa cells and live mammalian ovarian theca cells, is described. In some embodiments, the granulosa cells and the theca cells are contained in separate microcapsules in the composition; in some embodiments, the granulosa cells and the theca cells are contained together in the same microcapsules in the composition The composition is can be used for estrogen, and optionally also progesterone, delivery, and hence is preferably free or essentially free of oocytes. Methods of using the same and pharmaceutical formulations containing the same are also described.
Abstract:
Provided herein is a tissue stretching device including a tissue clamping member defining an area in a Z plane, wherein the tissue clamping member is configured to hold tissue parallel to the Z plane. Methods of use of the tissue stretching device to stretch a tissue as well as for culturing organized tissues are also provided. Stretched and/or cultured tissues produced by these processes are also provided, as well as methods of treatment making use of the same.
Abstract:
The invention is directed to compositions and methods for reconstructing artificial female reproductive organs. The constructs and methods of the invention can be used for ameliorating congenital malformations and disorders of female reproductive tract using tissue engineered female reproductive organs, such as the uterus, vagina, cervix, and fallopian tubes. These tissue engineered female reproductive organs can be generated by perfusing cultured cell populations derived from cells of the female reproductive tissues, such as uterine, vaginal, cervical, fallopian tube epithelial cells as well as smooth muscle cells.
Abstract:
Provided herein are methods and apparatuses for transfecting a cell with a compound of interest by stressing the cell, e.g. with shear stress. The compound of interest may be nucleic acids, proteins, molecules, nanoparticles, drugs, etc., or any combination thereof. Methods of printing cells with an inkjet printing device are also provided, wherein at least a portion of viable cells (preferably at least 1%) are transfected with a compound of interest. Preferably, at least 25% of the cells are viable after printing. In addition, methods of forming an array of viable cells are provided wherein at least a portion of the viable printed cells (preferably at least 1%) are transfected with at least one compound of interest.
Abstract:
Provided herein are isolated populations of kidney cells harvested from differentiated cells of the kidney, wherein the cells have been expanded in vitro. The kidney cells preferably produce erythropoietin (EPO). The kidney cells may also be selected based upon EPO production. Methods of producing an isolated population of EPO producing cells are also provided, and methods of treating a kidney disease resulting in decreased EPO production in a patient in need thereof are provided, including administering the population to the patient, whereby the cells express EPO in vivo in an oxygen tension-dependent manner.
Abstract:
A composition comprising microcapsules, the microcapsules containing both live mammalian ovarian granulosa cells and live mammalian ovarian theca cells, is described. In some embodiments, the granulosa cells and the theca cells are contained in separate microcapsules in the composition; in some embodiments, the granulosa cells and the theca cells are contained together in the same microcapsules in the composition The composition is can be used for estrogen, and optionally also progesterone, delivery, and hence is preferably free or essentially free of oocytes. Methods of using the same and pharmaceutical formulations containing the same are also described.
Abstract:
Provided herein is an apparatus for printing cells which includes an electrospinning device and an inkjet printing device operatively associated therewith. Methods of making a biodegradable scaffold having cells seeded therein are also provided. Methods of forming microparticles containing one or more cells encapsulated by a substrate are also provided, as are methods of forming an array of said microparticles.
Abstract:
The present provides a system and method of maintaining and/or increasing cell viability by downregulating cellular metabolic rate under hypoxic conditions. The present invention also relates to a system and method of prolonging the survival of implanted cells that are under hypoxic condition until host neovascularization is achieved.
Abstract:
A method of treating hypoxic tissue such as wound tissue comprises contacting a composition to the hypoxic tissue in a hypoxia-treatment effective amount, the composition comprising a biodegradable polymer and an inorganic peroxide incorporated into the polymer.
Abstract:
Provided herein are isolated populations of kidney cells harvested from differentiated cells of the kidney, wherein cells have been expanded in vitro. The kidney cells may include peritubular interstitial cells of the kidney, and preferably produce erythropoietin (EPO). The kidney cells may also be selected based upon EPO production. Methods of producing an isolated population of EPO producing cells are also provided, and methods of treating a kidney disease resulting in decreased EPO production in a patient in need thereof are provided, including administering the population to the patient, whereby the cells produce EPO in vivo.