Abstract:
There is provided an inspection system for inspecting a specimen, an inspection unit capable to operate in conjunction with an inspection machine unit, a die layout clipping unit, methods of inspecting a specimen, and a method of providing a die layout clip. The method of inspecting a specimen comprises: obtaining location information indicative of coordinates of a potential defect of interest revealed in the specimen and of one or more inspected layers corresponding to the potential defect of interest; sending to a die layout clipping unit a first data indicative of the location information and dimensions of an inspection area containing the potential defect of interest; receiving a die layout clip generated in accordance with the first data; specifying at least one inspection algorithm of the inspection area using information comprised in the die layout clip; and enabling inspection of the inspection area using the specified inspection algorithm.
Abstract:
Data indicative of location information of a potential defect of interest revealed in a specimen and of one or more layers of the specimen corresponding to the potential defect of interest may be received. A die layout clip may be generated in accordance with the data by deriving the die layout clip based on the location information of the potential defect of interest and the one or more layers of the specimen corresponding to the potential defect of interest. The die layout clip may include information indicative of one or more patterns characterizing an inspection area that includes the potential defect of interest of the specimen. The generated die layout clip may be transmitted to a semiconductor inspection unit where an inspection by the semiconductor inspection unit of a semiconductor wafer that includes the specimen corresponding to the potential defect of interest is based on the one or more patterns of the die layout clip.
Abstract:
A system for location based wafer analysis, the system comprising: (i) a first input interface; (ii) a second input interface; (iii) a correlator; and (iv) a processor, configured to generate inspection results for the inspected wafer, with the help of at least one frame run-time displacement.
Abstract:
A system for location based wafer analysis, the system comprising: (i) a first input interface; (ii) a second input interface; (iii) a correlator; and (iv) a processor, configured to generate inspection results for the inspected wafer, with the help of at least one frame run-time displacement.
Abstract:
Inspection data that corresponds to potential defects of an object may be received. A first set of locations of first potential defects can be identified. The first set of locations of the first potential defects can be imaged with a review tool to obtain a first set of review images. The first potential defects can be classified based on the first set of review images to obtain first classification results of the first potential defects. An instruction can be determined for the review tool based on the first classification results, the instruction being associated with detecting potential defects. Using the instruction, a second set of locations of second potential defects of the plurality of potential defects to be imaged with the review tool can be identified.
Abstract:
A method and an integrated system. The integrated system can include an optical inspection unit, a charged particle device, an interface unit, and at least one controller.
Abstract:
There is provided an inspection method capable of classifying defects detected on a production layer of a specimen. The method comprises: obtaining input data related to the detected defects; processing the input data using a decision algorithm associated with the production layer and specifying two or more classification operations and a sequence thereof; and sorting the processed defects in accordance with predefined bins, wherein each bin is associated with at least one classification operation, wherein at least one classification operation sorts at least part of the processed defects to one or more classification bins to yield finally classified defects, and wherein each classification operation, excluding the last one, sorts at least part of the processed defects to be processed by one or more of the following classification operations.
Abstract:
There is provided an inspection system for inspecting a specimen, an inspection unit capable to operate in conjunction with an inspection machine unit, a die layout clipping unit, methods of inspecting a specimen, and a method of providing a die layout clip. The method of inspecting a specimen comprises: obtaining location information indicative of coordinates of a potential defect of interest revealed in the specimen and of one or more inspected layers corresponding to the potential defect of interest; sending to a die layout clipping unit a first data indicative of the location information and dimensions of an inspection area containing the potential defect of interest; receiving a die layout clip generated in accordance with the first data; specifying at least one inspection algorithm of the inspection area using information comprised in the die layout clip; and enabling inspection of the inspection area using the specified inspection algorithm.
Abstract:
Examination system, method and computer-readable medium, the method comprising: processing by a processor using a first recipe at least one image comprised in images and metadata generated by an inspection tool and stored, to detect a first location set of first potential defects and attributes thereof; selecting and imaging part of the first location set with a review tool to obtain an image set; obtaining classification results of said first potential defects and determining a further recipe based thereon; processing the image using the further recipe for detecting a further location set of further defects; selecting part of the further location set; imaging the part with the review tool to obtain a further image set, and obtaining further classification results; and repeating determining the further recipe, processing the image, selecting and imaging part of the further location set, and obtaining further classification results, until a stopping criteria is met.
Abstract:
Inspection data that corresponds to potential defects of an object may be received. A first set of locations of first potential defects can be identified. The first set of locations of the first potential defects can be imaged with a review tool to obtain a first set of review images. The first potential defects can be classified based on the first set of review images to obtain first classification results of the first potential defects. An instruction can be determined for the review tool based on the first classification results, the instruction being associated with detecting potential defects. Using the instruction, a second set of locations of second potential defects of the plurality of potential defects to be imaged with the review tool can be identified.