摘要:
A catalyst for purification of CO-containing exhaust gases, includes a metal oxide as a support and a catalytic component A being supported thereon as a catalytic component and including a specific noble metal element; wherein the support includes a titanium-containing oxide as the metal oxide and is a monolithically molded type porous honeycomb support obtained by a process including the steps of extrusion-molding and then calcining materials of the support; and wherein the catalytic component A is distributed with a quantitatively great inclination toward surfaces of the catalyst. A process for purification of exhaust gases to remove CO therefrom, includes the step of bringing the exhaust gases into contact with the catalyst.
摘要:
The present invention has an object to more enhance the efficiency of the purification of the CO-containing exhaust gases with a catalytic-component-supporting type catalyst, particularly, to enable both achievement of high purification efficiency and long-term stable maintenance of high purification efficiency without increasing the quantity of the catalytic component as supported. As a means of achieving this object, a process for purification of exhaust gases, according to the present invention, is a process for purification of exhaust gases to remove CO therefrom, and is characterized by comprising the step of bringing the exhaust gases into contact with a catalyst layer at a temperature of 250 to 600° C., a pressure drop of not more than 100 mmH2O, and a linear velocity of 0.5 to 10 m/s, wherein the catalyst layer includes a honeycomb-structural catalyst having an opening size of 1.0 to 3.0 mm, an opening ratio of 60 to 80%, and an inner wall thickness of less than 2 mm.
摘要:
A catalyst for treating exhaust gases having excellent durability and performance for removing nitrogen oxides and organic halogen compounds and a low SO2 oxidation rate, a titanium oxide suitable for preparing the catalyst and a method for treating exhaust gases containing nitrogen oxides and/or organic halogen compounds using the catalyst are provided.The BET specific surface areas of the titanium oxide and the catalyst for treating exhaust gases are in the range of 85 to 250 m2/g and in the range of 50 to 200 m2/g respectively. The titanium oxide and the catalyst for treating exhaust gases have each a ratio in the range of 15 to 145%, the ratio of the intensity of the peak indicating an anatase crystal present in the range of 2θ=24.7° to 2θ=25.7° of powder X-ray diffraction thereof (Ia) to the intensity of the peak indicating an anatase crystal present in the range of 2θ=24.7° to 2θ=25.7° of powder X-ray diffraction of the standard sample comprising a mixture composed of 15% by mass of pure anatase-type titanium dioxide and 85% by mass of pure rutile-type titanium dioxide (Ib).
摘要:
A catalyst for treating exhaust gases having excellent durability and performance for removing nitrogen oxides and organic halogen compounds and a low SO2 oxidation rate, a titanium oxide suitable for preparing the catalyst and a method for treating exhaust gases containing nitrogen oxides and/or organic halogen compounds using the catalyst are provided.The BET specific surface areas of the titanium oxide and the catalyst for treating exhaust gases are in the range of 85 to 250 m2/g and in the range of 50 to 200 m2/g respectively. The titanium oxide and the catalyst for treating exhaust gases have each a ratio in the range of 15 to 145%, the ratio of the intensity of the peak indicating an anatase crystal present in the range of 2θ=24.7° to 2θ=25.7° of powder X-ray diffraction thereof (Ia) to the intensity of the peak indicating an anatase crystal present in the range of 2θ=24.7° to 2θ=25.7° of powder X-ray diffraction of the standard sample comprising a mixture composed of 15% by mass of pure anatase-type titanium dioxide and 85% by mass of pure rutile-type titanium dioxide (Ib).
摘要:
The present invention provides a catalyst having excellent capability of removing organic halogen compounds such as dioxins, a method for preparing the catalyst, and a method for removing organic halogen compounds using the catalyst. A catalyst for removing organic halogen compounds comprises titanium oxide as a catalyst component and has pores including a group of pores having a pore diameter distribution peak in a range of 0.01 to 0.05 gm and another group of pores having a pore diameter distribution peak in a range of 0.1 to 0.8 .mu.m. Another catalyst for removing organic halogen compounds comprises titanium oxide and a titanium-silicon composite oxide as catalyst components and has pores including a group of pores having a pore diameter distribution peak in a range of 0.01 to 0.05 .mu.m and another group of pores having a pore diameter distribution peak in a range of 0.8 to 4 .mu.m.
摘要:
This invention discloses an adsorbent ideal or the removal of nitrogen oxides (NO.sub.x : nitrogen monoxide and nitrogen dioxide), particularly nitrogen dioxide, from an exhaust gas containing the nitrogen oxides at low concentrations and a method for efficient removal of nitrogen oxides, particularly nitrogen dioxide, from an exhaust gas containing the nitrogen oxides at low concentrations by the use of the adsorbent. The adsorbent either comprises at least one noble metal selected from the group consisting of Pt, Au, Ru, Rh, and Pd and/or a compound thereof supported on a carrier or comprises the noble metal component and an oxide of at least one heavy metal selected from the group consisting of Mn, Fe, Co, Ni, Cu, Zn and Pb, which may be supported on the carrier, if necessary.
摘要:
There is provided a denitration catalyst excellent in denitration activity and durability in a high temperature region, for catalytically reducing NOx in an exhaust gas using a reducing agent such as ammonia. This denitration catalyst is (1) one containing a titanium-tungsten oxide obtained by coprecipitating a soluble titanium compound and a soluble tungsten compound from an aqueous medium under the conditions of a temperature of 60.degree. C. or less and a pH of the range of 5 to 8, and drying and calcining to coprecipitate formed; or (2) one comprising said titanium-tungsten oxide (component A), and an oxide of at least one element (component B) selected from the group consisting of cerium (Ce), lanthanum (La), praseodymium (Pr), neodymium (Nd), nickel (Ni) and tin (Sn).
摘要:
A metal-impregnated refractory product of this invention has high slag attack, gas attack, and spalling resistances and is used in various types of molten metal treatment vessels. A material of refractory particles mainly consisting of MgO or Al.sub.2 O.sub.3 is formed and heated by a suitable method to obtain a porous material body containing at least 4 vol % of open pores. A metal or an alloy mainly consisting of at least one type of a metal selected from the group consisting of iron, chromium, and nickel is impregnated in the porous material body at a ratio of 25 vol % or more of the open pores. The metal is filled in pores present in a region from the surface to at least a predetermined depth. The metal-impregnated refractory product can withstand various high-temperature damages and can be stably used over a long time period.
摘要翻译:本发明的金属浸渍耐火产品具有高的炉渣侵蚀,气体侵蚀和抗剥落性能,并用于各种类型的熔融金属处理容器。 通过合适的方法形成主要由MgO或Al 2 O 3组成的耐火材料的材料并加热,得到含有至少4体积%的开孔的多孔体。 主要由至少一种选自铁,铬和镍的金属组成的金属或合金以比例为25体积%以上的开孔浸渍在多孔材料体中。 金属填充在从表面到至少预定深度的区域中存在的孔中。 金属浸渍的耐火产品可以承受各种高温损坏,并可长期稳定使用。
摘要:
The present invention concerns a method of removing nitrogen oxides in exhaust gases from a diesel engine by using a catalyst in a reacter under the presence of ammonia, wherein a humidity of in-take air as a specific factor and one or more of engine power, fuel consumption amount of engine, temperature of engine in-take air and exhaust gas temperature as selective factors are measured respectively as the measuring factors and the flow rate of ammonia is controlled based on measured values and ammonia is supplied to an exhaust gas flow channel from the engine to the reactor.
摘要:
A catalyst for the purification of an exhaust gas by the removal, through selective reduction, of nitrogen oxides present in the exhaust gas, which comprises (A) 80 to 95% by weight of a sulfur oxide-containing catalytic oxide obtained by thermally treating at least one hydrous oxide compound selected from the group consisting of binary hydrous oxide compound of titanium and silicon, binary hydrous oxide compound of titanium and zirconium and ternary hydrous oxide compound of titanium, zirconium and silicon in the presence of at least one sulfur compound selected from the group consisting of sulfuric acid and ammonium sulfate, (B) 0 to 5% by weight of a catalytic oxide comprising vanadium oxide, (C) 1 to 15% by weight of a catlytic oxide comprising the oxide of at least one metal selected form the group consisitng of tungsten, molybdenum, tin and cerium.