Abstract:
Catalyst washcoats with improved porosity and methods for making the washcoats are provided. The process comprises incorporation of an oil-in-water macroemulsion into the catalyst slurry prior to washcoating the carrier substrate, and calcining the washcoated carrier substrate to remove the oil-in-water macroemulsion. Also provided are catalyst articles comprising the washcoat and methods for abatement of exhaust gas emissions.
Abstract:
Provided herein are catalytic articles and methods of making same using a single coat process. The catalytic article comprises an elongated substrate monolith having a plurality of longitudinally extending passages, each passage having at least a first surface and a second surface opposite the first surface, the first and second surfaces coated with at least a first coating and a second coating, wherein the first coating comprises a first catalyst composition and overlies the second coating on the first surface, the second coating comprises a second catalyst composition and overlies the first coating on the second surface, and wherein the first catalyst composition and second catalyst composition have a difference in surface charge. The washcoat may be applied as one slurry, which then self-segregates into two coatings.
Abstract:
Sorbents for removal of mercury and other pollutants from gas streams, such as a flue gas stream from coal-fired utility plants, and methods for their manufacture and use are disclosed. Embodiments include brominated sorbent substrate particles having a carbon content of less than about 10%. Other embodiments include one or more oxidatively active halides of a nonoxidative metal dispersed on sorbent substrate particles mixed with activated carbon in an amount up to 30% by weight.
Abstract:
Aspects of the invention relate to a method of treating a gas stream generated by a motorcycle, the method comprising: contacting a gas stream containing hydrocarbons, carbon monoxide and nitrogen oxides and generated by a motorcycle under both rich and lean engine operating conditions with a base metal catalyst composition, thereby removing at least a part of the hydrocarbons, carbon monoxide and nitrogen oxides in gas stream. The base metal catalyst composition comprises a support including at least 10% by weight of reducible ceria, and about 3 to about 7 wt % MnO and about 8 to about 22 wt % CuO on the reducible ceria support. The base metal catalyst composition is effective to promote a steam reforming reaction of hydrocarbons and a water gas shift reaction to provide H2 as a reductant to abate NOx.
Abstract:
Disclosed in certain embodiments is a sulfur tolerant catalytic system that includes a catalytic material coated onto a substrate. Certain embodiments are directed to a method of preparing a sulfur-tolerant catalyst.
Abstract:
The invention provides a catalyst article including a substrate underlying a multi-layer catalyst composition and a multi-layer catalyst composition comprising a first layer and a second layer, the first layer positioned between the substrate and the second layer, wherein the first layer comprises a first porous refractory oxide material impregnated with at least one base metal component and the second layer comprises a second porous refractory oxide material impregnated with at least one platinum group metal. Either the second porous refractory oxide material is a porous refractory oxide material other than alumina or the catalyst composition further comprises an intermediate layer between the first layer and the second layer, the intermediate layer comprising a refractory oxide material other than alumina. Methods of making and using the catalyst article are also provided, as well as emission treatment systems comprising the catalyst article.
Abstract:
Aspects of the invention pertain to catalytic articles and methods of making catalytic articles comprising a first catalytic coating comprising a platinum group metal, wherein the first catalytic coating is substantially free of Cu, Ni, Fe, Mn, V, Co, Ga, Mo, Mg, Cr and Zn; a second catalytic coating comprising a non-PGM metal, wherein the second catalytic coating is substantially free of any platinum group metal; and one or more substrates, wherein the first catalytic coating is separated from the second catalytic coating, optionally with a barrier layer.
Abstract:
Catalyst washcoats with improved porosity and methods for making the washcoats are provided. The process comprises incorporation of an oil-in-water macroemulsion into the catalyst slurry prior to washcoating the carrier substrate, and calcining the washcoated carrier substrate to remove the oil-in-water macroemulsion. Also provided are catalyst articles comprising the washcoat and methods for abatement of exhaust gas emissions.