Abstract:
There are disclosed diodes for detection and diodes for emission of near-infrared radiation. Such a diode employs an epitaxial layer of n-type cadmium tin phosphide grown on a p-type InP substrate, which is the light-transmitting window of the device. Also diclosed is a tipping technique of epitaxial growth in which the conditions of the substrate crystal and the tin-rich melt are controlled to obtain high quality heterojunctions. A mixture of tin, phosphorus, and cadmium is prepared in a separate saturation procedure to minimize substrate degradation during epitaxial growth. The indium phosphide substrates are high quality and ptype with predominantly cadmium or zinc doping. In some diodes the CdSnP2 epitaxial layers contain some indium traceable to dissolution of the indium phosphide substrate by the tin solution prior to nucleation and growth of the epitaxial layer. Later diodes grown from solutions containing controlled amounts of indium intentionally added to the presaturated melt, efficiently emitted infrared light near 1.0 Mu .
Abstract:
There are disclosed diodes for detection and diodes for emission of near-infrared radiation. Such a diode employs an epitaxial layer of n-type cadmium tin phosphide grown on a p-type InP substrate, which is the light-transmitting window of the device. Also disclosed is a tipping technique of epitaxial growth in which the conditions of the substrate crystal and the tin-rich melt are controlled to obtain high quality heterojunctions. A mixture of tin, phosphorus, and cadmium is prepared in a separate saturation procedure to minimize substrate degradation during epitaxial growth. The indium phosphide substrates are high quality and p-type with predominantly cadmium or zinc doping. In some diodes the CdSnP2 epitaxial layers contain some indium traceable to dissolution of the indium phosphide substrate by the tin solution prior to nucleation and growth of the epitaxial layer. Later diodes grown from solutions containing controlled amounts of indium intentionally added to the presaturated melt, efficiently emitted infrared light near 1.0 Mu .
Abstract:
There are disclosed indium phosphide p-n junction diodes providing efficient room temperature electroluminescence at wavelengths between 0.98 and 1.10 micrometers and comprising at least an n-type portion containing substantial quantities of cadmium and tin but forming a minor constituent in the n-type portion. The p-type portion is typically zinc or cadmium doped single crystal indium phosphide used as the substrate in the fabrication process. The n-type portion is epitaxially deposited by liquid phase epitaxial from tin solution. The resulting diode emits efficiently at the 1.05 micrometer wavelength of low loss glass fibers and also provides a better match to the absorption wavelength of infrared-to-visible frequency-converting phosphor than does a gallium arsenide laser or electroluminescence diode. External efficiencies exceeding 1 percent have been obtained.
Abstract:
An upconverting receiver for modulated radiation at a carrier wavelength of 10.6 micrometers and a tunable parametric oscillator operating in the infrared portion of the spectrum are disclosed, in each of which a zinc germanium phosphide (ZnGeP2) crystal is employed as the interaction medium and is pumped by a laser operating substantially at 1.06 micrometers in the infrared in a direction substantially normal to the optic axis. This crystal is presently unique in providing phase matching nearly normal to the optic axis for sum frequency upconversion from a signal wavelength of 10.6 micrometers.