摘要:
The present invention generally comprises a method and an apparatus for guiding the flow of processing gases away from chamber walls and slit valve opening. By controlling the flow path of the process gases within a processing chamber, undesirable deposition upon chamber walls and within slit valve openings may be reduced. By reducing deposition in slit valve openings, flaking may be reduced. By reducing deposition on chamber walls, the time between chamber cleaning may be increased. Thus, guiding the flow of processing gases within the processing chamber may increase substrate throughput.
摘要:
The present invention generally comprises a method and an apparatus for guiding the flow of processing gases away from chamber walls and slit valve opening. By controlling the flow path of the process gases within a processing chamber, undesirable deposition upon chamber walls and within slit valve openings may be reduced. By reducing deposition in slit valve openings, flaking may be reduced. By reducing deposition on chamber walls, the time between chamber cleaning may be increased. Thus, guiding the flow of processing gases within the processing chamber may increase substrate throughput.
摘要:
Embodiments disclosed herein generally relate to an apparatus and a method for placing a substrate substantially flush against a substrate support in a processing chamber. When a large area substrate is placed onto a substrate support, the substrate may not be perfectly flush against the substrate support due to gas pockets that may be present between the substrate and the substrate support. The gas pockets can lead to uneven deposition on the substrate. Therefore, pulling the gas from between the substrate and the support may pull the substrate substantially flush against the support. During deposition, an electrostatic charge can build up and cause the substrate to stick to the substrate support. By introducing a gas between the substrate and the substrate support, the electrostatic forces may be overcome so that the substrate can be separated from the susceptor with less or no plasma support which takes extra time and gas.
摘要:
Embodiments disclosed herein generally relate to an apparatus and a method for placing a substrate substantially flush against a substrate support in a processing chamber. When a large area substrate is placed onto a substrate support, the substrate may not be perfectly flush against the substrate support due to gas pockets that may be present between the substrate and the substrate support. The gas pockets can lead to uneven deposition on the substrate. Therefore, pulling the gas from between the substrate and the support may pull the substrate substantially flush against the support. During deposition, an electrostatic charge can build up and cause the substrate to stick to the substrate support. By introducing a gas between the substrate and the substrate support, the electrostatic forces may be overcome so that the substrate can be separated from the susceptor with less or no plasma support which takes extra time and gas.
摘要:
Embodiments of the invention generally provide a mixing block for mixing precursors and/or cleaning agent which has the advantage of maintaining the temperature and improving the mixing effect of the precursors, cleaning agent or the mixture thereof to eliminate the substrate-to-substrate variation, thereby providing improved process uniformity.
摘要:
The present invention generally relates to a capacitively coupled plasma (CCP) processing chamber, a manner to reduce or prevent stray capacitance, and a manner to measure plasma conditions within the processing chamber. As CCP processing chambers increase in size, there is a tendency for stray capacitance to negatively impact the process. Additionally, RF ground straps may break. By increasing the spacing between the chamber backing plate and the chamber wall, stray capacitance may be minimized. Additionally, the plasma may be monitored by measuring the conditions of the plasma at the backing plate rather than at the match network. In so measuring, the plasma harmonic data may be analyzed to reveal plasma processing conditions within the chamber.
摘要:
Embodiments disclosed herein generally relate to a PECVD apparatus. When the RF power source is coupled to the electrode at multiple locations, the current and voltage may be different at the multiple locations. In order to ensure that both the current and voltage are substantially identical at the multiple locations, an RF bridge assembly may be coupled between the multiple locations at a location just before connection to the electrode. The RF bridge assembly substantially equalizes the voltage distribution and current distribution between multiple locations. Therefore, a substantially identical current and voltage is applied to the electrode at the multiple locations.
摘要:
Embodiments disclosed herein generally relate to a PECVD apparatus. When the RF power source is coupled to the electrode at multiple locations, the current and voltage may be different at the multiple locations. In order to ensure that both the current and voltage are substantially identical at the multiple locations, an RF bridge assembly may be coupled between the multiple locations at a location just before connection to the electrode. The RF bridge assembly substantially equalizes the voltage distribution and current distribution between multiple locations. Therefore, a substantially identical current and voltage is applied to the electrode at the multiple locations.
摘要:
A box-cording apparatus used to cord up a packing box. The apparatus comprises a frame means having a base frame and support members slidably installed thereon, a driving means for moving the support members back and forth, and a frame rotating means having a shaft and a control means for the rotation of the shaft. The support members are bound together with parts of the box loaded on the base frame during the cording work and then pulled and received in the base frame, getting free from the corded parts of the box.
摘要:
An actuator assembly for a slit valve door is configured to maintain a slit valve in a closed condition notwithstanding a high pressure differential between adjacent chambers that the slit valve isolates from each other. The slit valve door actuator assembly includes an actuator which moves the slit valve door between open and closed positions, and a locking mechanism to keep the slit valve door in a position to seal the slit valve in resistance to high gas pressure against the slit valve door. The locking mechanism may include a hard stop which is selectively movable into position to block retracting movement of the slit valve door.