Abstract:
Methods and systems for automatically identifying and enumerating early granulated cells (EGC) in blood samples are disclosed. In one embodiment a method for identifying EGC in a blood sample includes analyzing white blood cells of the blood sample using a low angle light scatter (LALS) parameter, separating the EGCs from the other white blood cells using the LALS parameter, and enumerating the separated EGCs.
Abstract:
Methods and systems for automatically identifying and enumerating early granulated cells (EGC) in blood samples are disclosed. In one embodiment a method for identifying EGC in a blood sample includes analyzing white blood cells of the blood sample using a low angle light scatter (LALS) parameter, separating the EGCs from the other white blood cells using the LALS parameter, and enumerating the separated EGCs.
Abstract:
Embodiments of the present invention encompass automated systems and methods for analyzing white blood cell parameters in an individual based on a biological sample obtained from blood of the individual. Exemplary techniques involve correlating aspects of direct current (DC) impedance, radiofrequency (RF) conductivity, and/or light measurement data obtained from the biological sample with an evaluation of white blood cell conditions in the individual.
Abstract:
Container identification data from a container inspection unit that analyzes a container containing a liquid is combined with liquid level detection raw data from a liquid level detection unit that analyzes the container containing the liquid and a liquid level detection result is generated. The liquid level detection result is cross-checked with additional data from the container inspection unit. The result can be used to plan a route for the container in the laboratory automation system.
Abstract:
Container identification data from a container inspection unit that analyzes a container containing a liquid is combined with liquid level detection raw data from a liquid level detection unit that analyzes the container containing the liquid and a liquid level detection result is generated. The liquid level detection result is cross-checked with additional data from the container inspection unit. The result can be used to plan a route for the container in the laboratory automation system.
Abstract:
A method for determining the presence of a biological entity. The method may include entering into a digital computer, at least a plurality of first input values associated with a first genetic element, a plurality of second input values associated with a second genetic element, and a plurality of third input values associated with a third genetic element associated with a plurality of samples. The method also includes determining a threshold value associated with the third genetic element, separating the samples using the threshold value into a first set of samples and a second set of samples, clustering the first set of samples in a feature space defined by the first genetic element and the second genetic element, defining a first boundary space using the first set of samples, and defining a second boundary space using the second set of samples.
Abstract:
Embodiments of the present invention encompass automated systems and methods for analyzing white blood cell parameters in an individual based on a biological sample obtained from blood of the individual. Exemplary techniques involve correlating aspects of direct current (DC) impedance, radiofrequency (RF) conductivity, and/or light measurement data obtained from the biological sample with an evaluation of white blood cell conditions in the individual.
Abstract:
Embodiments of the present invention encompass automated systems and methods for analyzing immature platelet parameters in an individual based on a biological sample obtained from blood of the individual. Exemplary techniques involve correlating aspects of direct current (DC) impedance, radiofrequency (RF) conductivity, and/or light measurement data obtained from the biological sample with an evaluation of immature platelet conditions in the individual.
Abstract:
A method for determining the presence of a biological entity. The method may include entering into a digital computer, at least a plurality of first input values associated with a first genetic element, a plurality of second input values associated with a second genetic element, and a plurality of third input values associated with a third genetic element associated with a plurality of samples. The method also includes determining a threshold value associated with the third genetic element, separating the samples using the threshold value into a first set of samples and a second set of samples, clustering the first set of samples in a feature space defined by the first genetic element and the second genetic element, defining a first boundary space using the first set of samples, and defining a second boundary space using the second set of samples.
Abstract:
Embodiments of the present invention encompass automated systems and methods for analyzing white blood cell parameters in an individual based on a biological sample obtained from blood of the individual. Exemplary techniques involve correlating aspects of direct current (DC) impedance, radiofrequency (RF) conductivity, and/or light measurement data obtained from the biological sample with an evaluation of white blood cell conditions in the individual.