摘要:
Process for making a solid compound by precipitation, using a high intensity mixing reactor and comprising the steps of (A) introducing a first fluid material containing a first reactant and a second fluid material containing a second reactant into said reactor, in order to obtain a mixed fluid, in order to cause the first reactant to react with the second reactant to form a solid compound by precipitation in the mixed fluid; (B) withdrawing the mixed fluid containing the precipitated solid obtained in step (A) from the reactor, and; (C) optionally separating the precipitated solid compound from at least one fraction of the mixed fluid.
摘要:
A method of preparing a transparent polymer material includes i) obtaining composite nanoparticles having mineral nanoparticles at least partially coated with at least one monomer and/or at least one polymer suitable for promoting physicochemical interactions at the interface between the mineral nanoparticles and a thermoplastic polycarbonate matrix, the mineral nanoparticles being surface-modified by the monomer and/or the polymer, either directly by grafting or directly by adsorption of the monomer and/or polymer onto the surface of the mineral nanoparticles; or via a coupling agent selected from a chlorosilane or an organosilane including a functional group that is capable of reacting by a radical pathway. The composite nanoparticles obtained in step i) are mixed with the thermoplastic polycarbonate matrix in the molten state to obtain the transparent polymer material.
摘要:
A method of preparing a transparent polymer material includes i) obtaining composite nanoparticles having mineral nanoparticles at least partially coated with at least one monomer and/or at least one polymer suitable for promoting physicochemical interactions at the interface between the mineral nanoparticles and a thermoplastic polycarbonate matrix, the mineral nanoparticles being surface-modified by the monomer and/or the polymer, either directly by grafting or directly by adsorption of the monomer and/or polymer onto the surface of the mineral nanoparticles; or via a coupling agent selected from a chlorosilane or an organosilane including a functional group that is capable of reacting by a radical pathway. The composite nanoparticles obtained in step i) are mixed with the thermoplastic polycarbonate matrix in the molten state to obtain the transparent polymer material.
摘要:
A method of preparing a transparent polymer material includes mixing mineral nanoparticles selected from nanoparticles of alkaline-earth metal carbonates, alkaline-earth metal sulfates, metallic oxides, oxides of metalloids, and siloxanes, and a composition A including at least one thermoplastic polymer in the molten state selected from polycarbonate (PC), polystyrene (PS) and polymethyl methacrylate (PMMA) in order to obtain a master-batch, the mixture of step i) including at least 25% and at most 75% by weight of the mineral nanoparticles. The master-batch obtained in step i) is mixed with a composition B of a thermoplastic polycarbonate matrix (PCm) in the molten state, to obtain a transparent polymer material including at most 10% by weight of the mineral nanoparticles, preferably at most 5% by weight of the mineral nanoparticles.
摘要:
A method of preparing a transparent polymer material includes mixing mineral nanoparticles selected from nanoparticles of alkaline-earth metal carbonates, alkaline-earth metal sulfates, metallic oxides, oxides of metalloids, and siloxanes, and a composition A including at least one thermoplastic polymer in the molten state selected from polycarbonate (PC), polystyrene (PS) and polymethyl methacrylate (PMMA) in order to obtain a master-batch, the mixture of step i) including at least 25% and at most 75% by weight of the mineral nanoparticles. The master-batch obtained in step i) is mixed with a composition B of a thermoplastic polycarbonate matrix (PCm) in the molten state, to obtain a transparent polymer material including at most 10% by weight of the mineral nanoparticles, preferably at most 5% by weight of the mineral nanoparticles.
摘要:
The present invention provides a method of preparing a transparent polymer material, the method comprising steps i) and ii) in any order, the steps consisting in: i) mixing: mineral nanoparticles having a form factor strictly greater than 1.0; and a polymer matrix comprising a quantity of at least 80% by weight of a polycarbonate (PC) first thermoplastic polymer and of a second transparent thermoplastic polymer other than the first thermoplastic polymer, in order to obtain a mixture; and ii) heating the polymer matrix to the molten state, on its own or in the mixture; to obtain the transparent, polymer material, the mixture of step i) comprising a quantity of mineral nanoparticles having a form factor strictly greater than 1.0 that is strictly less than 5% by weight.
摘要:
The present invention provides a method of preparing a transparent polymer material, the method comprising steps i) and ii) in any order, the steps consisting in: i) mixing: mineral nanoparticles having a form factor strictly greater than 1.0; and a polymer matrix comprising a quantity of at least 80% by weight of a polycarbonate (PC) first thermoplastic polymer and of a second transparent thermoplastic polymer other than the first thermoplastic polymer, in order to obtain a mixture; and ii) heating the polymer matrix to the molten state, on its own or in the mixture; to obtain the transparent, polymer material, the mixture of step i) comprising a quantity of mineral nanoparticles having a form factor strictly greater than 1.0 that is strictly less than 5% by weight.
摘要:
Use of nanoparticles of barium sulfate or of calcium carbonate, with a particle size of less than or equal to 150 nm and greater than or equal to 0.5 nm, as filler in transparent polymer compositions. The compositions obtained simultaneously show good scratch resistance, good impact strength, good tensile strength, good heat stability and good visible and UV radiation stability, while at the same time conserving excellent transparency. The compositions may be used as replacement materials for glass in the motor vehicle sector and in the optics sector.
摘要:
A device is disclosed for separating, orienting and positioning axes including at least one operational flat. The device includes a static chute equipped with a wide bottom opening closed by a drawer which is moved with a back and forth motion from a withdrawn position in which it unveils a narrow opening which is large enough to enable the fall of a single axis onto rolling blades which are extended by descending ramps bringing each axis onto two bearing-sliding blades. The bearing sliding blades cooperate with two push plates, as well as a trap borne by the drawer, to produce the roll of the axis in the desired direction, followed by the slide of that axis without rotation to a selected position.
摘要:
The invention concerns an optocoupler. The optocoupler includes a substrate made of optically opaque electrically insulating material metallized to provide conductive traces on a top surface thereof which are electrically linked to metal pads on a bottom surface. A cadmium sulfoselenide photoresistor having an active surface is placed over the substrate with the active surface facing the substrate where the photoresistor has two electrodes. Metal leads connect each of the two electrodes of the photoresistor to two metallized traces on the substrate. A light emitting diode (LED) chip is mounted on the substrate facing the active surface of the photoresistor. The LED chip has a top and bottom electrode, where the bottom electrode is electrically attached to a third metallized trace and the top electrode is wire bonded to a fourth metallized trace. A cover made of optically opaque material is fixed to the substrate so as to enclose the photoresistor and the LED chip in a light tight enclosure. In an alternative embodiment of the invention, the photoresistor and the LED chip can lie side by side and be in optical communication with each other through a reflective coating on the inside of the cover.