Abstract:
A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.
Abstract:
A system for operating an electrokinetic device includes a support configured to hold and operatively couple with the electrokinetic device, an integrated electrical signal generation subsystem configured to apply a biasing voltage across a pair of electrodes in the electrokinetic device, and a light modulating subsystem configured to emit structured light onto the electrokinetic device. The system can further include a thermally controlled flow controller, and/or be configured to measure impedance across the electrokinetic device. The system can be a light microscope, including an optical train. The system can further include a light pipe, which can be part of the light modulating system, and which can be configured to supply light of substantially uniform intensity to the light modulating system or directly to the optical train.
Abstract:
A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.
Abstract:
Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.
Abstract:
Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.
Abstract:
Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.
Abstract:
A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.
Abstract:
A microfluidic device can include a base an outer surface of which forms one or more enclosures for containing a fluidic medium. The base can include an array of individually controllable transistor structures each of which can comprise both a lateral transistor and a vertical transistor. The transistor structures can be light activated, and the lateral and vertical transistors can thus be photo transistors. Each transistor structure can be activated to create a temporary electrical connection from a region of the outer surface of the base (and thus fluidic medium in the enclosure) to a common electrical conductor. The temporary electrical connection can induce a localized electrokinetic force generally at the region, which can be sufficiently strong to move a nearby micro-object in the enclosure.
Abstract:
A system for operating an electrokinetic device includes a support configured to hold and operatively couple with the electrokinetic device, an integrated electrical signal generation subsystem configured to apply a biasing voltage across a pair of electrodes in the electrokinetic device, and a light modulating subsystem configured to emit structured light onto the electrokinetic device. The system can further include a thermally controlled flow controller, and/or be configured to measure impedance across the electrokinetic device. The system can be a light microscope, including an optical train. The system can further include a light pipe, which can be part of the light modulating subsystem, and which can be configured to supply light of substantially uniform intensity to the light modulating subsystem or directly to the optical train.
Abstract:
A system for operating an electrokinetic device includes a support configured to hold and operatively couple with the electrokinetic device, an integrated electrical signal generation subsystem configured to apply a biasing voltage across a pair of electrodes in the electrokinetic device, and a light modulating subsystem configured to emit structured light onto the electrokinetic device. The system can further include a thermally controlled flow controller, and/or be configured to measure impedance across the electrokinetic device. The system can be a light microscope, including an optical train. The system can further include a light pipe, which can be part of the light modulating subsystem, and which can be configured to supply light of substantially uniform intensity to the light modulating subsystem or directly to the optical train.