摘要:
A device is disclosed having a low-voltage memory device. The device includes a first memory having a first memory topology and a second memory having a second memory topology, with both memories located in an integrated circuit. The first memory is a relatively high-density memory device, capable of storing large amounts of data relative to the second memory. The second memory is a low-voltage memory device capable of being accessed at low-voltages relative to the voltage at which the first memory can be accessed. Accordingly, the second memory is accessible when the integrated circuit is placed in a low-voltage mode of operation, which may represent a data retention state (sleep state) for the first memory or other portions of the integrated circuit. Thus, the device is able to store large amounts of data in the high density memory in a normal or active mode of operation, and also have access to the low-voltage memory during the low-voltage mode of operation.
摘要:
A device is disclosed having a low-voltage memory device. The device includes a first memory having a first memory topology and a second memory having a second memory topology, with both memories located in an integrated circuit. The first memory is a relatively high-density memory device, capable of storing large amounts of data relative to the second memory. The second memory is a low-voltage memory device capable of being accessed at low-voltages relative to the voltage at which the first memory can be accessed. Accordingly, the second memory is accessible when the integrated circuit is placed in a low-voltage mode of operation, which may represent a data retention state (sleep state) for the first memory or other portions of the integrated circuit. Thus, the device is able to store large amounts of data in the high density memory in a normal or active mode of operation, and also have access to the low-voltage memory during the low-voltage mode of operation.
摘要:
In a memory (100), a local data line pair (116, 118) is precharged to a first logic state and a global data line pair (101, 104) is precharged to a second logic state. A selected memory cell is coupled to the local data line pair (116, 118) to develop a differential local data line voltage. The differential local data line voltage is subsequently amplified to form an amplified differential local data line voltage. A selected one of the global data line pair (101, 104) is driven to the first logic state in response to the amplified differential local data line voltage to form a differential global data line voltage.
摘要:
A controller for a memory device has a power control section to control power to a memory element in an operation mode and in a retention mode. A monitoring section receives and monitors error information and a storage section stores a retention parameter. In the operation mode, the power control section causes an operation voltage to be applied to the memory element, and in the retention mode, the power control section causes a time-varying voltage to be applied to the memory. The power control section also causes the voltage across the memory element to change in the retention mode between a first retention voltage and a second retention voltage based on the retention parameter.
摘要:
A low power scan flip-flop cell includes a multiplexer, a master latch, a scan slave latch and a data slave latch. The master latch is connected to the multiplexer, and used for generating a first latch signal. The scan slave latch is connected to the master latch, and generates a scan output (SO) signal. The data slave latch is connected to the master latch, and generates a Q output depending on a scan enable (SE) input signal and the first latch signal. The Q output is maintained at a predetermined level during scan mode, which eliminates unnecessary switching of combinational logic connected to the scan flip-flop cell and thus reduces power consumption.
摘要:
A reconfigurable integrated circuit (IC) has IC interface terminals including circuit input terminals and circuit output terminals. A bypass controller and bypass circuitry are coupled to each other, and to at least one of the circuit input terminals and at least one of the circuit output terminals. A processing circuit has multiple circuit modules coupled to the bypass circuitry. The processing circuit is coupled to at least one of the circuit input terminals and at least one of the circuit output terminals. In operation the bypass controller controls the bypass circuitry to selectively couple at least one pair of the IC interface terminals together, the pair including one of the circuit input terminals and one of the circuit output terminals. When the pair of IC interface terminals are coupled together, at least one of the circuit modules is selectively de-coupled from the pair of the IC terminals.
摘要:
A memory includes an SRAM bitcell including a pair of cross-coupled inverters, wherein a first inverter of the pair includes a first device having a body and a second inverter of the pair includes a second device having a body. A first selection circuit has a first input coupled to a first supply voltage terminal, a second input coupled to a second supply voltage terminal, and an output coupled to a first current electrode of the first device and to a first current electrode of the second device. A second selection circuit has a first input coupled to the first supply voltage terminal, a second input coupled to the second supply voltage terminal, and an output coupled to the body of each of the first and second devices. A word line coupled to the SRAM bitcell is driven by a word line driver coupled to the first supply voltage terminal.
摘要:
An integrated circuit having a memory and a method for operating the memory are provided. The method for operating the memory comprises: accessing a first portion of the memory, the first portion having a first access margin; detecting an error in the first portion of the memory; changing the first access margin to a second access margin, the second access margin being different than the first access margin; determining that the error is corrected with the first portion having the second access margin; and storing an access assist bit in a first storage element, the access assist bit corresponding to the first portion, wherein the assist bit, when set, indicates that subsequent accesses to the first portion are accomplished at the second access margin.
摘要:
Test circuitry for determining whether a memory can operate at a lower operating voltage. The test circuitry includes a sense circuit having a delayed sensing characteristic as compared to other sense amplifier circuits of the memory. With this circuitry, the test circuitry can determine if the sense circuit can provide valid data under more severe sensing conditions. In one example, the sense circuit includes a delay circuit in the sense enable signal path. If sense circuit can provide data at more server operating conditions, then the memory operating voltage can be lowered.
摘要:
A memory and method for access the memory are provided. A first test is used to test memory elements to determine a lowest power supply voltage at which all the memory elements will operate to determine a weak memory element. Redundancy is used to substitute a redundant memory element for the weak memory element. The weak memory element is designated as a test element. In response to receiving a request to change a power supply voltage provided to the memory elements, a second test is used to test the test element to determine if the test element will function correctly at a new power supply voltage. If the test element passes the second test, the memory elements are accessed at the new power supply voltage. If the test element fails the second test, the memory elements are accessed using an access assist operation.