Tri-gate patterning using dual layer gate stack
    1.
    发明申请
    Tri-gate patterning using dual layer gate stack 有权
    使用双层栅极堆叠的三栅极图案化

    公开(公告)号:US20090170267A1

    公开(公告)日:2009-07-02

    申请号:US12006047

    申请日:2007-12-28

    IPC分类号: H01L21/336

    摘要: In general, in one aspect, a method includes forming an n-diffusion fin and a p-diffusion fin in a semiconductor substrate. A high dielectric constant layer is formed over the substrate. A first work function metal layer is created over the n-diffusion fin and a second work function metal layer, thicker than the first, is created over the n-diffusion fin. A silicon germanium layer is formed over the first and second work function metal layers. A ploysilicon layer is formed over the silicon germanium layer and is polished. The ploysilicon layer over the first work function metal layer is thicker than the ploysilicon layer over the second work function metal layer. A hard mask is patterned and used to etch the ploysilicon layer and the silicon germanium layer to create gate stacks. The etch rate of the silicon germanium layer is faster over the first work function metal layer.

    摘要翻译: 通常,在一个方面,一种方法包括在半导体衬底中形成n扩散鳍和p扩散鳍。 在衬底上形成高介电常数层。 在n扩散翅片上形成第一功函数金属层,并在n扩散鳍片上形成比第一功函数金属层厚的第二功函数金属层。 在第一和第二功函数金属层上形成硅锗层。 在硅锗层上方形成硅层,并进行抛光。 第一功函数金属层上的多晶硅层比第二功函数金属层上的多晶硅层厚。 硬掩模被图案化并用于蚀刻合金层和硅锗层以产生栅极堆叠。 硅锗层的蚀刻速率比第一功函数金属层更快。

    Tri-gate patterning using dual layer gate stack
    2.
    发明授权
    Tri-gate patterning using dual layer gate stack 有权
    使用双层栅极堆叠的三栅极图案化

    公开(公告)号:US07745270B2

    公开(公告)日:2010-06-29

    申请号:US12006047

    申请日:2007-12-28

    IPC分类号: H01L21/84

    摘要: In general, in one aspect, a method includes forming an n-diffusion fin and a p-diffusion fin in a semiconductor substrate. A high dielectric constant layer is formed over the substrate. A first work function metal layer is created over the n-diffusion fin and a second work function metal layer, thicker than the first, is created over the n-diffusion fin. A silicon germanium layer is formed over the first and second work function metal layers. A polysilicon layer is formed over the silicon germanium layer and is polished. The polysilicon layer over the first work function metal layer is thicker than the polysilicon layer over the second work function metal layer. A hard mask is patterned and used to etch the polysilicon layer and the silicon germanium layer to create gate stacks. The etch rate of the silicon germanium layer is faster over the first work function metal layer.

    摘要翻译: 通常,在一个方面,一种方法包括在半导体衬底中形成n扩散鳍和p扩散鳍。 在衬底上形成高介电常数层。 在n扩散翅片上形成第一功函数金属层,并在n扩散鳍片上形成比第一功函数金属层厚的第二功函数金属层。 在第一和第二功函数金属层上形成硅锗层。 在硅锗层上形成多晶硅层并进行抛光。 第一功函数金属层上的多晶硅层比第二功函数金属层上的多晶硅层厚。 硬掩模被图案化并用于蚀刻多晶硅层和硅锗层以产生栅极堆叠。 硅锗层的蚀刻速率比第一功函数金属层更快。

    Three dimensional strained quantum wells and three dimensional strained surface channels by Ge confinement method
    7.
    发明授权
    Three dimensional strained quantum wells and three dimensional strained surface channels by Ge confinement method 有权
    三维应变量子阱和三维应变表面通道的Ge约束法

    公开(公告)号:US07767560B2

    公开(公告)日:2010-08-03

    申请号:US11864963

    申请日:2007-09-29

    IPC分类号: H01L21/36 H01L21/20

    摘要: The present disclosure describes a method and apparatus for implementing a 3D (three dimensional) strained high mobility quantum well structure, and a 3D strained surface channel structure through a Ge confinement method. One exemplary apparatus may include a first graded SiGe fin on a Si substrate. The first graded SiGe fin may have a maximum Ge concentration greater than about 60%. A Ge quantum well may be on the first graded SiGe fin and a SiGe quantum well upper barrier layer may be on the Ge quantum well. The exemplary apparatus may further include a second graded SiGe fin on the Si substrate. The second graded SiGe fin may have a maximum Ge concentration less than about 40%. A Si active channel layer may be on the second graded SiGe fin. Other high mobility materials such as III-V semiconductors may be used as the active channel materials. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.

    摘要翻译: 本公开描述了通过Ge约束法实现3D(三维)应变高迁移量子阱结构和3D应变表面通道结构的方法和装置。 一个示例性设备可以包括在Si衬底上的第一梯度SiGe鳍。 第一级的SiGe鳍可以具有大于约60%的最大Ge浓度。 Ge量子阱可以在第一等级的SiGe鳍上,SiGe量子阱上阻挡层可以在Ge量子阱上。 示例性设备还可以包括在Si衬底上的第二渐变SiGe鳍。 第二级的SiGe鳍可以具有小于约40%的最大Ge浓度。 Si活性沟道层可以在第二级别的SiGe鳍上。 可以使用诸如III-V族半导体的其它高迁移率材料作为活性通道材料。 当然,在不脱离本实施例的情况下,可以进行许多替代,变化和修改。

    THREE DIMENSIONAL STRAINED QUANTUM WELLS AND THREE DIMENSIONAL STRAINED SURFACE CHANNELS BY GE CONFINEMENT METHOD
    9.
    发明申请
    THREE DIMENSIONAL STRAINED QUANTUM WELLS AND THREE DIMENSIONAL STRAINED SURFACE CHANNELS BY GE CONFINEMENT METHOD 有权
    通过三维尺寸应变量子阱和三维应变表面通道

    公开(公告)号:US20090085027A1

    公开(公告)日:2009-04-02

    申请号:US11864963

    申请日:2007-09-29

    IPC分类号: H01L29/12 H01L21/205

    摘要: The present disclosure describes a method and apparatus for implementing a 3D (three dimensional) strained high mobility quantum well structure, and a 3D strained surface channel structure through a Ge confinement method. One exemplary apparatus may include a first graded SiGe fin on a Si substrate. The first graded SiGe fin may have a maximum Ge concentration greater than about 60%. A Ge quantum well may be on the first graded SiGe fin and a SiGe quantum well upper barrier layer may be on the Ge quantum well. The exemplary apparatus may further include a second graded SiGe fin on the Si substrate. The second graded SiGe fin may have a maximum Ge concentration less than about 40%. A Si active channel layer may be on the second graded SiGe fin. Other high mobility materials such as III-V semiconductors may be used as the active channel materials. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.

    摘要翻译: 本公开描述了通过Ge约束法实现3D(三维)应变高迁移量子阱结构和3D应变表面通道结构的方法和装置。 一个示例性设备可以包括在Si衬底上的第一梯度SiGe鳍。 第一级的SiGe鳍可以具有大于约60%的最大Ge浓度。 Ge量子阱可以在第一等级的SiGe鳍上,SiGe量子阱上阻挡层可以在Ge量子阱上。 示例性设备还可以包括在Si衬底上的第二渐变SiGe鳍。 第二级的SiGe鳍可以具有小于约40%的最大Ge浓度。 Si活性沟道层可以在第二级别的SiGe鳍上。 可以使用诸如III-V族半导体的其它高迁移率材料作为活性通道材料。 当然,在不脱离本实施例的情况下,可以进行许多替代,变化和修改。