摘要:
The present invention relates to an inclined structure of a court floor having a new structure for easily collecting automatically supplying balls used in practice. According to an inclined structure of a court floor according to the present disclosure, the ball used for practice can be rolled down outwardly along the slope of the court, and then be collected in the collecting ditch and gathered in one place, so there is no need to collect scattered balls separately.
摘要:
Exemplary embodiments of the present invention disclose a light emitting diode including an n-type contact layer doped with silicon, a p-type contact layer, an active region disposed between the n-type contact layer and the p-type contact layer, a superlattice layer disposed between the n-type contact layer and the active region, the superlattice layer including a plurality of layers, an undoped intermediate layer disposed between the superlattice layer and the n-type contact layer, and an electron reinforcing layer disposed between the undoped intermediate layer and the superlattice layer. Only a final layer of the superlattice layer closest to the active region is doped with silicon, and the silicon doping concentration of the final layer is higher than that of the n-type contact layer.
摘要:
A die-mounting substrate and method incorporating dummy traces for improving mounting film planarity makes the use of film attach possible with a simplified manufacturing process and in applications where film-attach was not previously practical. The die-mounting substrate includes dummy traces that are generated along with signal traces extending into the die mounting area of the substrate. The dummy traces are designed according to the same design rules as the signal traces and are disposed in otherwise empty regions between signal traces and vias within the die mounting area. The result is die mounting area without regions empty of signal traces that previously either lack conductor or are filled completely with conductor, either of which will result in surface variation that compromises the film bond.
摘要:
Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.
摘要:
Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.
摘要:
Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.
摘要:
Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.
摘要:
Exemplary embodiments of the present invention relate to a method of fabricating a light emitting diode (LED). According to an exemplary embodiment of the present invention, the method includes growing a first GaN-based semiconductor layer on a substrate at a first temperature by supplying a chamber with a nitride source gas and a first metal source gas, stopping the supply of the first metal source gas and maintaining the first temperature for a first time period after stopping the supply of the first metal source gas, decreasing the temperature of the substrate to the a second temperature after the first time period elapses, growing an active layer of the first GaN-based semiconductor layer at the second temperature by supplying the chamber with a second metal source gas.