摘要:
The present invention provides a non-volatile phase change memory cell containing an electrode contact layer disposed between a metal electrode layer and a phase change material layer, the electrode contact layer being formed of a transparent conducting oxide-based material which has a high electric conductivity, a low thermal conductivity and a good thermal stability. A non-volatile phase change memory cell according to the present invention may be utilized to reduce the electric power needed for reset and set operation.
摘要:
The present invention provides a non-volatile phase change memory cell containing an electrode contact layer disposed between a metal electrode layer and a phase change material layer, the electrode contact layer being formed of a transparent conducting oxide-based material which has a high electric conductivity, a low thermal conductivity and a good thermal stability. A non-volatile phase change memory cell according to the present invention may be utilized to reduce the electric power needed for reset and set operation.
摘要:
A phase change memory device may include an integrated circuit substrate and first and second phase change memory elements on the integrated circuit substrate. The first phase change memory element may include a first phase change material having a first crystallization temperature. The second phase change memory element may include a second phase change material having a second crystallization temperature. Moreover, the first and second crystallization temperatures may be different so that the first and second phase change memory elements are programmable at different temperatures. Related methods and systems are also discussed.
摘要:
A method of forming a semiconductor device includes a liner is conformally stacked on a semiconductor substrate before coating an SOG layer thereon, and then curing the SOG layer, preferably in an ambient of oxygen radicals formed at a temperature of 1000° C. or higher when oxygen and hydrogen are supplied. The oxygen radicals are preferably formed by irradiating ultraviolet rays to ozone or forming oxygen plasma. The SOG layer is preferably made of a polysilazane-based material that may promote a conversion of the SOG layer into a silicon oxide layer.
摘要:
A method of forming a trench type isolation layer is provide, wherein the method comprises: forming a trench by etching after forming a trench etching pattern on a substrate; forming a silicon nitride liner on an inner wall of the trench; filling the trench with a first buried oxide layer; exposing an upper part of the liner of the trench by recessing the first buried oxide layer using a wet process; removing the upper part of the silicon nitride liner using isotropic etching; and filling the recessed space of the trench with a second buried oxide layer. The method may further comprise: forming the trench etching pattern by depositing and patterning a silicon nitride layer, and forming a thermal oxide layer, preferably through annealing, for healing etching defects on an inner wall of the trench, between forming the trench and forming the liner.
摘要:
Phase change memory devices may be fabricated by forming a first electrode on a substrate and forming a chalcogenide material on the first electrode. The chalcogenide material is plasma treated sufficiently to induce a plasma species throughout the chalcogenide material. A second electrode is formed on the chalcogenide material. Related devices are also described.
摘要:
Provided are a phase change memory device and a method of forming the same. According to the phase change memory, a first plug electrode and a second plug electrode are spaced apart from each other in a mold insulating layer. A phase change pattern is disposed on the mold insulating layer. The phase change pattern contacts a top of the first plug electrode and a first potion of a top of the second plug electrode. An interconnection is electrically connected to a second portion of the top of the second plug electrode.
摘要:
Phase change memory devices can have bottom patterns on a substrate. Line-shaped or L-shaped bottom electrodes can be formed in contact with respective bottom patterns on a substrate and to have top surfaces defined by dimensions in x and y axes directions on the substrate. The dimension along the x-axis of the top surface of the bottom electrodes has less width than a resolution limit of a photolithography process used to fabricate the phase change memory device. Phase change patterns can be formed in contact with the top surface of the bottom electrodes to have a greater width than each of the dimensions in the x and y axes directions of the top surface of the bottom electrodes and top electrodes can be formed on the phase change patterns, wherein the line shape or the L shape represents a sectional line shape or a sectional L shape of the bottom electrodes in the x-axis direction.
摘要:
A hydraulic control valve for an Anti-lock Braking System (ABS) includes a modulator block having at least a housing, an inlet port, a receiving unit, and an outlet port. The housing is coupled to at least a plunger, an armature, and a coil body. The housing also has a coupling hole to receive a valve seat. Upon application of a current, a coil generates a magnetic field causing a plunger coupled with the armature to perform a reciprocating motion in which a projection of the plunger moves in contact with and separates from an aperture in the valve seat to adjust fluid flow. The hydraulic control valve also comprises fluid flow paths, provided in a space between the valve seat and the housing, which communicate with an outlet port. The hydraulic control valve accommodates at least a filter and a seal cup on the outer periphery of the valve seat.
摘要:
Disclosed herein are various methods for preventing bending of a patterned SOI layer during trench sidewall oxidation, the methods comprising providing a patterned SOI layer having at least one trench, said patterned SOI layer disposed upon an underlying buried silicon oxide layer; and blocking diffusion of oxygen between said patterned SOI and buried silicon oxide layer.