摘要:
A structure of manufacture of a semiconductor die on a lead-on-chip (LOC) packaging using a flexible copper plated tape and a standard lead frame is disclosed. A semiconductor die with bonding pads in the center is interconnected to a flexible copper plated tape by copper trace, solder bumps, or gold bump. The flexible copper plated tape is then placed on top of and attached to a standard lead frame. The configuration of a flexible copper plated tape, such material includes polymide tape, matches the configuration of a lead frame that allows the use of a standard outer lead frame. The configuration of a polymide tape provides greater flexibility in the placement of bonding pads anywhere on a semiconductor die without limiting the bonding pads to be placed in the center of a semiconductor die.
摘要:
A substrate design to improve chip package reliability is provided. The chip package includes a substrate having a ceramic layer formed in a recess. A die is attached to the substrate on the ceramic layer. The substrate may be attached to a printed circuit board. The substrate may be fabricated by forming a recess in a substrate, such as a multi-layer substrate formed of organic dielectric materials. A ceramic layer is then affixed to the substrate in the recess. A die may be attached to the ceramic layer and the substrate may be attached to a printed circuit board.
摘要:
A method of bonding a conductive wire on copper pad is presented. A passivation layer is formed on a copper pad. The passivation layer has an opening through which at least a portion of the copper pad is exposed. A nickel-copper-phosphorous (Ni—Cu—P) layer is formed on the copper pad by electroless plating. A conductive wire is bonded through the Ni—Cu—P layer and to the copper pad. The Ni—Cu—P layer protects the underline copper pads from oxidation so that a better bonding can be formed between the conductive wire and the copper pad.
摘要:
A substrate design to improve chip package reliability is provided. The chip package includes a substrate having a ceramic layer formed in a recess. A die is attached to the substrate on the ceramic layer. The substrate may be attached to a printed circuit board. The substrate may be fabricated by forming a recess in a substrate, such as a multi-layer substrate formed of organic dielectric materials. A ceramic layer is then affixed to the substrate in the recess. A die may be attached to the ceramic layer and the substrate may be attached to a printed circuit board.