摘要:
A chip holder formed of silicon, glass, other ceramics or other suitable materials includes a plurality of recesses for retaining semiconductor chips. The bond pads of the semiconductor chip are formed on or over an area of the chip holder that surrounds the semiconductor chip thus expanding the bonding area. The bond pads are coupled, using semiconductor wafer processing techniques, to internal bond pads formed directly on the semiconductor chip.
摘要:
A chip holder formed of silicon, glass, other ceramics or other suitable materials includes a plurality of recesses for retaining semiconductor chips. The bond pads of the semiconductor chip are formed on or over an area of the chip holder that surrounds the semiconductor chip thus expanding the bonding area. The bond pads are coupled, using semiconductor wafer processing techniques, to internal bond pads formed directly on the semiconductor chip.
摘要:
A method for fabricating a semiconductor package is provided. In one embodiment, a semiconductor chip having a plurality of exposed conductive layers thereon is provided. A first substrate having a first surface and a second surface is provided, the first surface having a plurality of exposed via plugs thereunder. The semiconductor chip is bonded to the first substrate, wherein the plurality of exposed conductor layers are aligned and in contact with the surfaces of the exposed via plugs. A portion of the second surface of the first substrate is then removed to expose the opposite ends of the plurality of via plugs. A plurality of UBM layers is formed on the surfaces of the opposite ends of the plurality of via plugs. A plurality of solder bumps is formed and mounted on the UBM layers. A second substrate having a first surface and a second surface is provided, the solder bumps being mounted to the first surface of the second substrate. A plurality of solder balls is formed and mounted to the second surface of the second substrate. A third substrate is mounted to the solder balls.
摘要:
A method for fabricating a semiconductor package is provided. In one embodiment, a semiconductor chip having a plurality of exposed conductive layers thereon is provided. A first substrate having a first surface and a second surface is provided, the first surface having a plurality of exposed via plugs thereunder. The semiconductor chip is bonded to the first substrate, wherein the plurality of exposed conductor layers are aligned and in contact with the surfaces of the exposed via plugs. A portion of the second surface of the first substrate is then removed to expose the opposite ends of the plurality of via plugs. A plurality of UBM layers is formed on the surfaces of the opposite ends of the plurality of via plugs. A plurality of solder bumps is formed and mounted on the UBM layers. A second substrate having a first surface and a second surface is provided, the solder bumps being mounted to the first surface of the second substrate. A plurality of solder balls is formed and mounted to the second surface of the second substrate. A third substrate is mounted to the solder balls.
摘要:
A method is described for forming trench isolation for integrated circuits on silicon wafers by selectively doping the trench regions by ion implantation and then etching these areas with a wet chemical etch. A dopant such as boron, is implanted in a sequence of energies and doses to provide a desired trench profile of heavily doped silicon. The implanted silicon etches far more rapidly than the surrounding silicon and is readily etched out forming a trench. The concentration of dopant diminishes rapidly in the periphery of the implanted region. As the etch front approaches the periphery, the silicon etch rate, likewise diminishes and the etch can be quenched to leave a uniform surface layer of enhanced boron concentration which lines the resultant trench to form an effective channel stop. Wet etched trenches provide advantages over trenches formed by RIE including smooth rounded trench profiles which reduce stress. In addition, trenches having widths below 0.25 microns and essentially vertical walls can readily be formed.
摘要:
A method for measuring a dielectric layer thickness calibration reference standard including providing a substrate having a dielectric layer for calibrating a dielectric layer thickness measuring tool; cleaning the dielectric layer according to a cleaning process including at least one of spraying and scrubbing; and, measuring the thickness of the dielectric layer with the dielectric layer thickness measuring tool including at least one portion of the dielectric layer displaced from the substrate center.
摘要:
A process is described for forming a microlens, either directly on a substrate or as part of a process to manufacture an optical imaging array. The process starts with the deposition of a layer of silicon oxide over the substrate, said layer being the determinant of the lens to substrate distance. This is followed by layers of polysilicon and silicon nitride. The latter is patterned to form a mask which protects the poly, except for a small circular opening, during its oxidation (under the same conditions as used for LOCOS). The oxide body that is formed is lens shaped, extending above the poly surface by about the same amount as below it, and just contacting the oxide layer. After the silicon nitride and all poly have been removed, the result is a biconvex microlens. In a second embodiment, a coating of SOG is provided that has a thickness equal to half the microlens thickness, thereby converting the latter to a plano-convex lens.
摘要:
An integrated de-focus pattern provides an effective in-line monitor of de-focus and relative tilt for photo processing steps of integrated circuit wafers. The de-focus pattern is formed on an integrated circuit wafer in the vertical and horizontal spaces between integrated circuit chips. The de-focus pattern has a number of different test patterns at different heights above the wafer surface. De-focus patterns are placed across the entire wafer surface. The de-focus patterns are formed at the same time the features of the circuit chips are formed. The de-focus patterns can be analyzed optically or using a scanning electron microscope.
摘要:
A polysilicon resistor structure and a method by which the polysilicon resistor structure may be formed. A polysilicon resistor is formed upon the surface of a semiconductor substrate. A pair of dummy polysilicon layers is formed along opposite edges and separated from the polysilicon resistor. A pair of metal sidewalls is then formed upon the upper surfaces of the pair of dummy polysilicon layers, and a top metal layer is formed bridging the upper surfaces of the pair of metal sidewalls. The pair of dummy polysilicon layers, the pair of metal sidewalls and the top metal layer form an open ended cavity upon the semiconductor substrate within which structure the polysilicon resistor resides. The polysilicon resistor is separated from the structure by an insulating material which is not susceptible to outgassing of hydrogen.
摘要:
An integrated de-focus pattern provides an effective in-line monitor for photo processing steps of integrated circuit wafers. The de-focus pattern is formed on an integrated circuit wafer in the vertical and horizontal spaces between integrated circuit chips. The de-focus pattern has a number of different test patterns at different heights above the wafer surface. De-focus patterns are placed across the entire wafer surface. The de-focus patterns are formed at the same time the features of the circuit chips are formed. The de-focus patterns can be analyzed optically or using a scanning electron microscope.