摘要:
A method and design for the fabrication of a laminated yoke for a high data rate magnetic read-write transducer head. A full film layer of first ferromagnetic material is formed on a base using either plating or sputtering. The base comprises a read head, a ferromagnetic pole piece, and a ferromagnetic shield which also serves as a pole piece. A patterned layer of first non-magnetic dielectric is then formed on the full film layer of first ferromagnetic material. A patterned layer of photoresist is then formed on the full film layer of first ferromagnetic material and the patterned non-magnetic dielectric and used as a frame for a frame plating deposition of a patterned layer of second ferromagnetic material. The full film layer of first ferromagnetic material and the non-magnetic dielectric are then patterned, using the patterned layer of second ferromagnetic material as a mask and ion beam etching.
摘要:
A method for fabricating a soft adjacent layer (SAL) magnetoresistive (MR) sensor element and several soft adjacent layer (SAL) magnetoresistive (MR) sensor elements which may be fabricated employing the method. There is first provided a substrate. There is formed over the substrate a dielectric layer, where the dielectric layer has a first surface of the dielectric layer and a second surface of the dielectric layer opposite the first surface of the dielectric layer. There is also formed over the substrate a magnetoresistive (MR) layer contacting the first surface of the dielectric layer. There is also formed over the substrate a soft adjacent layer (SAL), where the soft adjacent layer (SAL) has a first surface of the soft adjacent layer (SAL) and a second surface of the soft adjacent layer (SAL). The first surface of the soft adjacent layer (SAL) contacts the second surface of the dielectric layer. Finally, there is also formed over the substrate a transverse magnetic biasing layer, where the transverse magnetic biasing layer contacts the second surface of the soft adjacent layer (SAL), and where at least one of the dielectric layer, the magnetoresistive (MR) layer, the soft adjacent layer (SAL) and the transverse magnetic biasing layer is a patterned layer formed employing an etch mask which serves as a lift-off stencil for forming a patterned second dielectric layer adjoining an edge of the patterned layer. The invention also contemplates a soft adjacent layer (SAL) magnetoresistive (MR) sensor element formed with the magnetoresistive (MR) layer interposed between the substrate and the soft adjacent layer (SAL). Similarly, the invention also contemplates a soft adjacent layer (SAL) magnetoresistive (MR) sensor element employing a transverse magnetic biasing layer formed of a hard bias permanent magnet material.
摘要:
A method for fabricating a soft adjacent layer (SAL) magnetoresistive (MR) sensor element and several soft adjacent layer (SAL) magnetoresistive (MR) sensor elements which may be fabricated employing the method. There is first provided a substrate. There is formed over the substrate a dielectric layer, where the dielectric layer has a first surface of the dielectric layer and a second surface of the dielectric layer opposite the first surface of the dielectric layer. There is also formed over the substrate a magnetoresistive (MR) layer contacting the first surface of the dielectric layer. There is also formed over the substrate a soft adjacent layer (SAL), where the soft adjacent layer (SAL) has a first surface of the soft adjacent layer (SAL) and a second surface of the soft adjacent layer (SAL). The first surface of the soft adjacent layer (SAL) contacts the second surface of the dielectric layer. Finally, there is also formed over the substrate a transverse magnetic biasing layer, where the transverse magnetic biasing layer contacts the second surface of the soft adjacent layer (SAL), and where at least one of the dielectric layer, the magnetoresistive (MR) layer, the soft adjacent layer (SAL) and the transverse magnetic biasing layer is a patterned layer formed employing an etch mask which serves as a lift-off stencil for forming a patterned second dielectric layer adjoining an edge of the patterned layer. The invention also contemplates a soft adjacent layer (SAL) magnetoresistive (MR) sensor element formed with the magnetoresistive (MR) layer interposed between the substrate and the soft adjacent layer (SAL). Similarly, the invention also contemplates a soft adjacent layer (SAL) magnetoresistive (MR) sensor element employing a transverse magnetic biasing layer formed of a hard bias permanent magnet material.
摘要:
A method for forming a magnetically biased magnetoresistive (MR) layer. There is first provided a substrate. There is then formed over the substrate a ferromagnetic magnetoresistive (MR) material layer. There is then forming contacting the ferromagnetic magnetoresistive (MR) material layer a magnetic material layer formed of a first crystalline phase, where the magnetic material layer is formed of a crystalline multiphasic magnetic material having the first crystalline phase which does not appreciably antiferromagnetically exchange couple with the ferromagnetic magnetoresistive (MR) material layer and a second crystalline phase which does appreciably antiferromagnetically exchange couple with the ferromagnetic magnetoresistive (MR) material layer. There is then annealed thermally while employing a first thermal annealing method employing an extrinsic magnetic bias field the magnetic material layer formed of the first crystalline phase to form a magnetically aligned magnetic material layer formed of the first crystalline phase. Finally, there is then annealed thermally while employing a second thermal annealing method without employing an extrinsic magnetic bias field the magnetically aligned magnetic material layer formed of the first crystalline phase to form an antiferromagnetically coupled magnetically aligned magnetic material layer formed of the second crystalline phase. The method may be employed for forming non-parallel antiferromagnetically biased multiple magnetoresistive (MR) layer magnetoresistive (MR) sensor elements while employing a single antiferromagnetic material.
摘要:
MTJ devices commonly degrade when subjected to the heat treatments required by subsequent further processing. This problem has been overcome by protecting the MTJ's sidewalls with a two layer laminate. The first layer is laid down under oxygen-free conditions, no attempt being made to replace any oxygen that is lost during the deposition. This is followed immediately by the deposition of the second layer (usually, but not mandatorily, of the same material as the first layer) in the presence of some oxygen.
摘要:
A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
摘要:
A method for forming a spin-valve type abutted junction GMR sensor element with a thinner hard magnetic longitudinal bias layer having significantly improved magnetic properties in the junction region and a spin-valve type abutted junction GMR sensor element with a thinner hard magnetic longitudinal bias layer having significantly improved magnetic properties in the junction region fabricated according to that method.
摘要:
The possibility of shorting between a spin valve and its underlying magnetic shield layer can be largely eliminated by choosing the bottom spin valve structure. However, doing so causes the hard longitudinal bias that is standard for all such devices to degrade. The present invention overcomes this problem by inserting a thin NiCr, Ni, Fe, or Cr layer between the antiferromagnetic layer and the longitudinal bias layers. This provides a smoother surface for the bias layers to be deposited onto, thereby removing structural distortions to the longitudinal bias layer that would otherwise be present. A process for manufacturing the structure is also described.
摘要:
A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
摘要:
A high data-rate stitched pole magnetic read/write-head combining sputtered and plated high magnetic moment materials and a method for fabricating same. The plating and stitching aspects of this fabrication allow the formation of a very narrow write-head, while the sputtering permits the use of high magnetic moment materials having high resistivity and low coercivity.