摘要:
A new method is provided for the creation of a high-reliability metal capacitor as part of back-end processing. A first layer of metal interconnect is created, ac contact point is provided in the surface of the first layer of interconnect aligned with which a capacitor is to be created. A copper interconnect is formed overlying the contact point using TaN for the bottom plate, a high dielectric-constant dielectric material capacitor and using TaN for the top plate. The deposited layers are patterned and etched, a spacer layer is formed over sidewalls of the capacitor to prevent capacitor sidewall leakage. Top interconnect metal is then formed by first depositing a layer of etch stop material for further interconnection of the capacitor and the semiconductor devices provided in the underlying substrate.
摘要:
A new method is provided for the creation of a high-reliability metal capacitor as part of back-end processing. A first layer of metal interconnect is created, a contact point is provided in the surface of the first layer of interconnect aligned with which a capacitor is to be created. A copper interconnect is formed overlying the contact point using TaN for the bottom plate, a high dielectric-constant dielectric material capacitor and using TaN for the top plate. The deposited layers are patterned and etched, a spacer layer is formed over sidewalls of the capacitor to prevent capacitor sidewall leakage. Top interconnect metal is then formed by first depositing a layer of etch stop material for further interconnection of the capacitor and the semiconductor devices provided in the underlying substrate.
摘要:
A new method is provided for the creation of a high-reliability metal capacitor as part of back-end processing. A first layer of metal interconnect is created, ac contact point is provided in the surface of the first layer of interconnect aligned with which a capacitor is to be created. A copper interconnect is formed overlying the contact point using TaN for the bottom plate, a high dielectric-constant dielectric material capacitor and using TaN for the top plate. The deposited layers are patterned and etched, a spacer layer is formed over sidewalls of the capacitor to prevent capacitor sidewall leakage. Top interconnect metal is then formed by first depositing a layer of etch stop material for further interconnection of the capacitor and the semiconductor devices provided in the underlying substrate.
摘要:
Within a method for fabricating a microelectronic fabrication, and the microelectronic fabrication fabricated employing the method, there is formed within the microelectronic fabrication a capacitor structure which comprises a first capacitor plate layer having formed thereupon a capacitor dielectric layer in turn having formed thereupon a second capacitor plate layer, wherein each of the foregoing layers having an exposed sidewall to thus form a series of exposed sidewalls. The capacitor structure also comprises a silicon oxide dielectric layer formed passivating the series of exposed sidewalls of the first capacitor plate layer, the capacitor dielectric layer and the second capacitor plate layer a silicon oxide dielectric layer.
摘要:
Within a method for fabricating a microelectronic fabrication, and the microelectronic fabrication fabricated employing the method, there is formed within the microelectronic fabrication a capacitor structure upon a conductor stud layer formed into a first via defined by a patterned dielectric layer to reach a one of a pair of patterned conductor layers within the microelectronic fabrication prior to forming through the patterned dielectric layer a second via to reach the other of the pair of patterned conductor layers within the microelectronic fabrication. The method provides the resulting microelectronic fabrication with enhanced reliability and performance.
摘要:
A process for integrating the fabrication of a thick, copper inductor structure, with the fabrication of narrow channel length CMOS devices, has been developed. The integrated process features the use of only one additional photolithographic masking step, used to form the opening in an IMD layer, that will accommodate the subsequent inductor structure. After forming damascene type openings in the same IMD layer, in the CMOS region, copper is deposited and then defined, to result in a thick, copper inductor structure, in the opening in the IMD layer, in a first region of a semiconductor substrate, as well as to result in copper interconnect structures, in the damascene type openings located in a second region of the semiconductor structure, used for the narrow channel length CMOS devices. The use of a thick, copper inductor structure, equal to the thickness of the IMD layer, results in increased inductance, or an increased quality factor, when compared to counterparts formed with thinner metal inductors.
摘要:
A process is described for the manufacture of a capacitor having low V.sub.cc. Said process is fully compatible with standard IC manufacturing and introduces minimum modification thereto. The process involves the formation of a capacitor having both upper and lower electrodes that comprise layers of a metal silicide. The lower electrode is formed as a byproduct of the SALICIDE process while the upper electrode is formed by first laying down a layer of polysilicon followed by a layer of a silicide-forming metal such as titanium, cobalt, or tungsten. Sufficient of the metal must be provided to ensure that all of the polysilicon gets transformed to silicide.
摘要:
A capacitor for use within a microelectronic product employs a first capacitor plate layer that includes a first series of horizontally separated and interconnected tines. A capacitor dielectric layer separates the first capacitor plate layer from a second capacitor plate layer. The second capacitor plate layer includes a second series of horizontally separated and interconnected tines horizontally interdigitated with the first series of horizontally separated and interconnected tines. The capacitor is formed employing a self-aligned method and the capacitor dielectric layer is formed in a serpentine shape.
摘要:
A metal-over-metal (MOM) device and the method for manufacturing same is provided. The device has at least one device cell on a first layer comprising a frame piece and a center piece surrounded by the frame piece. The center piece has a cross-shape center portion defining four quadrants of space between the frame and center pieces. The center piece has one or more center fingers each extending from at least one of the four ends thereof within a quadrant. The frame piece also has one or more frame fingers extending therefrom, each being in at least one quadrant and not being overlapped with the center finger in the same quadrant.
摘要:
A stacked integrated circuit (IC) MIM capacitor structure and method for forming the same the MIM capacitor structure including a first MIM capacitor structure formed in a first IMD layer comprising an first upper and first lower electrode portions; at least a second MIM capacitor structure arranged in stacked relationship in an overlying IMD layer comprising a second upper electrode and second lower electrode to form an MIM capacitor stack; wherein, the first lower electrode is arranged in common electrical signal communication comprising metal filled vias with the second upper electrode and the first upper electrode is arranged in common electrical signal communication with the second lower electrode.