摘要:
A heat sink with a collapse structure and a semiconductor device with the heat sink are proposed, in which the heat sink is in ladder-like shape due to a height difference formed between an extending portion and an body of the heat sink, and the body has at least one surface exposed to outside of the semiconductor package. The extending portion produces collapse deformation in response to stress from engagement of molds in a molding process, so as to prevent a semiconductor chip from being damaged by the stress. The heat sink directly attached to the chip allows heat generated by the chip to pass through the extending portion to the body of the heat sink, and then the heat can be dissipated through the exposed surface of the body to the outside of the semiconductor package, so as to improve the heat dissipating efficiency.
摘要:
A heat sink with a collapse structure and a semiconductor device with the heat sink are proposed, in which the heat sink is in ladder-like shape due to a height difference formed between an extending portion and an body of the heat sink, and the body has at least one surface exposed to outside of the semiconductor package. The extending portion produces collapse deformation in response to stress from engagement of molds in a molding process, so as to prevent a semiconductor chip from being damaged by the stress. The heat sink directly attached to the chip allows heat generated by the chip to pass through the extending portion to the body of the heat sink, and then the heat can be dissipated through the exposed surface of the body to the outside of the semiconductor package, so as to improve the heat dissipating efficiency.
摘要:
A window-type ball grid array (WBGA) semiconductor package with a lead frame as a chip carrier and a method for fabricating the same are provided. The lead frame has a plurality of leads encompassing an opening, each lead having an upper surface and an opposing lower surface. A resin material is pre-molded on the lower surfaces of the leads, with wire-bonding portions and ball-implanting portions defined on the leads being exposed. At least a chip is mounted on the upper surfaces of the leads and covers the opening, allowing the chip to be electrically connected to the wire-bonding portions of the leads by a plurality of bonding wires via the opening. Then, an encapsulant is formed to encapsulate the chip and fill into the opening for encapsulating the bonding wires. Finally, solder balls are implanted on the ball-implanting portions of the leads to complete fabrication of the semiconductor package.
摘要:
A semiconductor package with a lead frame as a chip carrier and a method for fabricating the same are provided. The lead frame includes a die pad and a plurality of leads properly spaced apart from the die pad, each lead being composed of an inner lead portion and an outer lead portion, wherein the inner lead portion is directed toward the die pad, and the outer lead portion has a terminal. At least a chip is mounted on the die pad, and a first encapsulant is formed for encapsulating the chip, die pad and inner lead portions. An injection-molded second encapsulant is formed for encapsulating the first encapsulant and outer lead portions, but exposing the terminals of the outer lead portions. The second encapsulant made by injection molding can prevent resin flash over the exposed terminals, thereby assuring electrical-connection quality of the semiconductor package.
摘要:
A flip-chip bumping technology is proposed, which provides a flip-chip bumping structure with dedicated test pads on semiconductor chip and method of fabricating the same. The proposed flip-chip bumping technology is characterized by the forming of a lined-array of electrically-conductive dual-pad blocks respectively over the internal I/O points of the semiconductor chip, each dual-pad block including a first pad and a second pad located beside and electrically connected to the first pad; and wherein the respective first and second pads of the dual-pad blocks-are alternately designated as bump pads and test pads. During testing procedure, the probing to the internal circuitry of the semiconductor chip is carried out through the test-pad portions of the dual-pad blocks, so that the probing needles would leave no scratches over the bumppad portions of the same. During subsequent bumping process, solder bumps are formed respectively over the bump-pad portions of the dual-pad blocks. Since the bump-pad portions of the dual-pad blocks would be left unscratched, it allows the solder bump attachment to be more assured in quality and reliability.