摘要:
A flip-ship semiconductor package with a lead frame as a chip carrier is provided, wherein a plurality of leads of the lead frame are each formed with at least a dam member thereon. When a chip is mounted on the lead frame by means of solder bumps, each of the solder bumps is attached to the corresponding one of the leads at a position between the dam member and an inner end of the lead. During a reflow-soldering process for wetting the solder bumps to the leads, the dam members would help control collapse height of the solder bumps, so as to enhance resistance of the solder bumps to thermal stress generated by CTE (coefficient of thermal expansion) mismatch between the chip and the leads, thereby preventing incomplete electrical connection between the chip and the leads.
摘要:
A flip-ship semiconductor package with a lead frame as a chip carrier is provided, wherein a plurality of leads of the lead frame are each formed with at least a dam member thereon. When a chip is mounted on the lead frame by means of solder bumps, each of the solder bumps is attached to the corresponding one of the leads at a position between the dam member and an inner end of the lead. During a reflow-soldering process for wetting the solder bumps to the leads, the dam members would help control collapse height of the solder bumps, so as to enhance resistance of the solder bumps to thermal stress generated by CTE (coefficient of thermal expansion) mismatch between the chip and the leads, thereby preventing incomplete electrical connection between the chip and the leads.
摘要:
A method is proposed for fabricating a TFBGA (Thin & Fine Ball-Grid Array) package with embedded heat spreader. Conventionally, since an individual TFBGA package is quite small in size, it would be highly difficult to incorporate an embedded heat spreader therein. As a solution to this problem, the proposed method utilizes a single substrate predefined with a plurality of package sites, and further utilizes a heat-spreader frame including an integrally-formed matrix of heat spreaders each corresponding to one of the package sites on the substrate. A batch of semiconductor chips are then mounted on the respective package sites on the substrate. During the encapsulation process, a single continuous encapsulation body is formed to encapsulate the entire heat-spreader frame and all the semiconductor chips. After ball implantation, a singulation process is performed to cut apart the encapsulation body into individual package units, each serving as the intended TFBGA package. In the foregoing process, since the entirety of the heat-spreader frame is relatively large in size as compared to the size of an individual TFBGA package, it can be easily handled, so that the embedding of a heat spreader in each package unit can be easily carried out.
摘要:
A QFN semiconductor package and a fabrication method thereof are proposed, wherein a lead frame having a plurality of leads is adopted, and each lead is formed at its inner end with a protruding portion. A wire bonding region and a bump attach region are respectively defined on opposite surfaces of the protruding portion, and staggered in position. This allows a force applied from a wire bonder to the wire bonding regions not to adversely affect solder bumps implanted on the bump attach regions, so that the solder bumps can be structurally assured without cracking. Moreover, the wire bonding regions spaced apart from the bump attach regions can be prevented from being contaminated by an etching solution used in solder bump implantation, so that wire bonding quality can be well maintained.
摘要:
A heat sink with a collapse structure and a semiconductor device with the heat sink are proposed, in which the heat sink is in ladder-like shape due to a height difference formed between an extending portion and an body of the heat sink, and the body has at least one surface exposed to outside of the semiconductor package. The extending portion produces collapse deformation in response to stress from engagement of molds in a molding process, so as to prevent a semiconductor chip from being damaged by the stress. The heat sink directly attached to the chip allows heat generated by the chip to pass through the extending portion to the body of the heat sink, and then the heat can be dissipated through the exposed surface of the body to the outside of the semiconductor package, so as to improve the heat dissipating efficiency.
摘要:
A multi-chip packaging structure in which a plurality of chips is aligned on two surfaces of a substrate and the substrate has an opening. The chip located on the second surface of the substrate has center bonding pads arrangement. These bonding pads are connected to the conductive connections on the first surface of the substrate by means of the opening. The other chips are attached to the first surface of the substrate and have a plurality of bonding pads connected to the conductive connections on the first surface of the substrate by wire bonding or flip-chip bonding. Furthermore, a heat sink is attached to the back surface of the chip located on the second surface in order to improve the heat dissipation performance of the package.
摘要:
A package structure stacking chips on a front surface and a back surface of a substrate including at least a substrate, a plurality of chip sets, a plurality of support members, a plurality of glue layers, a plurality of wires, and a mold compound. The substrate has a front surface and a back surface opposite to the front surface. Each chip set has one or more chips, each chip having a plurality of bonding pads. The chip sets are stacked as a laminate on the front surface of the substrate, respectively. A plurality of support members are arranged between each two adjacent chip sets. A glue layers are used to connect the support members, the chip sets, and the substrate. The chip in the same chip sets is electrically connected to each other or to the substrate by the bonding pads. Finally, the front surface of the substrate, the support members, the chip sets, and the glue layers are encapsulated with a mold compound. Moreover, a plurality of flip chips are deposited on the back surface of the substrate.
摘要:
A multi-chip module (MCM) integrated circuit package structure is proposed, which can be used to pack a plurality of semiconductor chips of different functions while nonetheless allowing the overall package size to be as small as some existing types of integrated circuit packages, such as the SO (Small Outline) and QFP (Quad Flat Package) types, so that it can be manufactured using the existing fabrication equipment. The proposed MCM integrated circuit package structure is characterized in the use of a substrate having a centrally-located opening, and at least one semiconductor chip is mounted on the front surface of the substrate and a semiconductor chip of a central-pad type having a plurality of centrally-located bonding pads is mounted on the back surface of the substrate with the centrally-located bonding pads being exposed through the opening. This arrangement allows the overall package size to be made very compact and also allows the wiring to the central-pad type semiconductor chip to be shortened.
摘要:
A flip-ship semiconductor package with a lead frame as a chip carrier is provided, wherein a plurality of leads of the lead frame are each formed with at least a dam member thereon. When a chip is mounted on the lead frame by means of solder bumps, each of the solder bumps is attached to the corresponding one of the leads at a position between the dam member and an inner end of the lead. During a reflow-soldering process for wetting the solder bumps to the leads, the dam members would help control collapse height of the solder bumps, so as to enhance resistance of the solder bumps to thermal stress generated by CTE (coefficient of thermal expansion) mismatch between the chip and the leads, thereby preventing incomplete electrical connection between the chip and the leads.
摘要:
A semiconductor package and its fabricating method are proposed, in which a plurality of passive devices are integrated under a semiconductor chip, so as to increase the layout number of the passive devices in the semiconductor package and enhance the flexibility of substrate routability, as well as reduce an occupied area of a substrate for miniaturize the semiconductor package in profile. Moreover, as the integrated passive devices are further encapsulated by using an insulative material prior to a molding process, the dislocation of the passive devices caused by a high temperature and mold flow of a molding resin can be prevented from occurrence during molding. Furthermore, the encapsulated passive devices are prevented from contacting bonding wires, allowing the occurrence of short circuit to be avoided and quality of the packaged product to be assured.