摘要:
Electrical devices having electrodes containing carbon nanotubes infused to a substrate are described herein. The electrical devices contain at least a first electrode material containing a first plurality of carbon nanotubes infused to a first substrate and a second electrode material containing a second plurality of carbon nanotubes infused to a second substrate. The first electrode material and the second electrode material are wound in a spiral configuration about a central axis. The electrical devices can be supercapacitors, which also contain at least an electrolyte in contact with the first electrode material and the second electrode material, and a first separator material disposed between the first electrode material and the second electrode material. Methods and apparatuses for making the electrical devices are also disclosed herein.
摘要:
Electrical devices having a plurality of stacked electrode layers are described. At least one of the electrode layers contains continuous fibers that are infused with carbon nanotubes. The continuous fibers can be disposed upon an electrically conductive base plate. The electrical devices can further contain an electrolyte contacting each electrode layer and a layer of separator material disposed between each electrode layer, in which case the electrical devices can form a supercapacitor. Such supercapacitors can have a capacitance of at least about 1 Farad/gram of continuous fibers. The capacitance can be increased by coating at least a portion of the infused carbon nanotubes with a material such as, for example, a conducting polymer, a main group metal compound, and/or a transition metal compound. Methods for producing the electrical devices are also described.
摘要:
Electrical devices containing continuous fibers that are infused with carbon nanotubes are described herein. The electrical devices contain at least a first electrode layer and a second electrode layer, where the first and second electrode layers each contain a plurality of continuous fibers that are infused with carbon nanotubes. In some embodiments, the electrical devices can be supercapacitors, further containing at least a base plate, a layer of separator material disposed between the first and second electrode layers, and an electrolyte in contact with the first and second electrode layers. The first and second electrode layers can be formed by conformal winding of the continuous fibers. The electrical devices can contain any number of additional electrode layers, each being separated from one another by a layer of separator material. Methods for producing the electrical devices are also described herein.
摘要:
Filtration systems containing a filtration medium and methods related thereto are described herein. The filtration system includes a plurality of fibers of spoolable length, where the fibers are a carbon nanotube-infused fiber material. The filtration systems can be operated with reel-to-reel processing or in a continuous manner in order to sorb hydrophobic materials from a liquid medium. The filtration systems also include various means to remove the hydrophobic materials from the filtration medium, including press rollers and chemical extraction baths. Illustrative liquid media that can be treated with the filtration systems include, for example, hydrophobic materials admixed in an aqueous phase, bilayers (e.g., oil-water bilayers), oil in a subterranean formation, water sources containing trace organic pollutants or trace organic compounds, and fermentation broths.
摘要:
A composition includes a carbon nanotube (CNT)-infused aramid fiber material that includes an aramid fiber material of spoolable dimensions, a barrier coating conformally disposed about the aramid fiber material, and carbon nanotubes (CNTs) infused to the aramid fiber material. The infused CNTs are uniform in length and uniform in density. A continuous CNT infusion process includes:(a) disposing a barrier coating and a carbon nanotube (CNT)-forming catalyst on a surface of an aramid fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the aramid fiber material, thereby forming a carbon nanotube-infused aramid fiber material.
摘要:
A radar absorbing composite includes a (CNT)-infused fiber material disposed in at least a portion of a matrix material. The composite absorbs radar in a frequency range from about 0.10 Megahertz to about 60 Gigahertz. The CNT-infused fiber material forms a first layer that reduces radar reflectance and a second layer that dissipates the energy of the radar. A method of manufacturing this composite includes disposing a CNT-infused fiber material in a portion of a matrix material with a controlled orientation of the CNT-infused fiber material within the matrix material, and curing the matrix material. The composite can be formed into a panel which is adaptable as a structural component of a transport vessel or missile for use in stealth applications.
摘要:
A composition includes a carbon nanotube (CNT)-infused glass fiber material, which includes a glass fiber material of spoolable dimensions and carbon nanotubes (CNTs) bonded to it. The CNTs are uniform in length and distribution. A continuous CNT infusion process includes: (a) disposing a carbon-nanotube forming catalyst on a surface of a glass fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the glass fiber material, thereby forming a carbon nanotube-infused glass fiber material. The continuous CNT infusion process optionally includes extruding a glass fiber material from a glass melt or removing sizing material from a pre-fabricated glass fiber material.
摘要:
An apparatus having a composite space-based structure with a first carbon nanotube infused material and a second carbon nanotube infused material. The first and second carbon nanotube infused materials each having a range of carbon nanotube loading selected to provide different functionalities.
摘要:
A wire includes a plurality of carbon nanotube infused fibers in which the infused carbon nanotubes are aligned parallel to the fiber axes. An electromagnetic shield for a wire includes a plurality of carbon nanotube infused fibers, in which the infused carbon nanotubes are aligned radially about the fiber axes. The plurality of carbon nanotube infused fibers are arranged circumferentially about the wire with the fiber axes parallel to the wire. A self-shielded wire includes 1) a wire that includes a plurality of carbon nanotube infused fibers in which the infused carbon nanotubes are aligned parallel to the fiber axes; and 2) an electromagnetic shield that includes a plurality of carbon nanotube infused fibers in which the carbon nanotubes are aligned radially about the fiber axes. The axes of the carbon nanotube infused fibers of the wire and the carbon nanotube infused fibers of the electromagnetic shield share are parallel.
摘要:
In various embodiments, composite materials containing a ceramic matrix and a carbon nanotube-infused fiber material are described herein. Illustrative ceramic matrices include, for example, binary, ternary and quaternary metal or non-metal borides, oxides, nitrides and carbides. The ceramic matrix can also be a cement. The fiber materials can be continuous or chopped fibers and include, for example, glass fibers, carbon fibers, metal fibers, ceramic fibers, organic fibers, silicon carbide fibers, boron carbide fibers, silicon nitride fibers and aluminum oxide fibers. The composite materials can further include a passivation layer overcoating at least the carbon nanotube-infused fiber material and, optionally, the plurality of carbon nanotubes. The fiber material can be distributed uniformly, non-uniformly or in a gradient manner in the ceramic matrix. Non-uniform distributions may be used to form impart different mechanical, electrical or thermal properties to different regions of the ceramic matrix.