摘要:
Methods, algorithms, processes, circuits, and/or structures for laser patterning suitable for customized RFID designs are disclosed. In one embodiment, a method of laser patterning of an identification device can include the steps of: (i) depositing a patternable resist formulation on a substrate having configurable elements and/or materials thereon; (ii) irradiating the resist formulation with a laser tool sufficiently to change the solubility characteristics of the resist in a developer; and (iii) developing exposed areas of the resist using the developer. Embodiments of the present invention can advantageously provide a relatively low cost and high throughput approach for customized RFID devices.
摘要:
A RF MOS- or nonlinear device-based surveillance and/or identification tag, and methods for its manufacture and use. The tag generally includes (a) an inductor, (b) a first capacitor plate coupled to the inductor, (c) a dielectric film on the first capacitor plate, (d) a semiconductor component on the dielectric film, and (e) a conductor that provides electrical communication between the semiconductor component and the inductor. The method of manufacture generally includes (1) depositing a semiconductor material (or precursor) on a dielectric film; (2) forming a semiconductor component from the semiconductor material/precursor; (3) forming a conductive structure at least partly on the semiconductor component; and (4) etching the electrically functional substrate to form (i) an inductor and/or (ii) a second capacitor plate. The method of use generally includes (i) causing/inducing a current in the present tag sufficient for it to generate detectable electromagnetic radiation; (ii) detecting the radiation; and optionally, (iii) selectively deactivating the tag. The present invention advantageously provides a low cost EAS/RFID tag capable of operating at MHz frequencies and in frequency division and/or frequency multiplication modes.
摘要:
A RF MOS- or nonlinear device-based surveillance identification tag, and methods for its manufacture and use. The tag includes an inductor, a capacitor plate coupled to the inductor, a dielectric film on the capacitor plate, a semiconductor component on the dielectric film, and a conductor providing electrical communication between the semiconductor component and the inductor. The method of manufacture includes depositing a semiconductor material/precursor on a dielectric film; forming a semiconductor component from the semiconductor material/precursor; forming a conductive structure at least partly on the semiconductor component; and etching the electrically functional substrate to form an inductor and/or a second capacitor plate. The method of use includes causing/inducing a current in the tag sufficient to generate detectable electromagnetic radiation; detecting the radiation; and selectively deactivating the tag. The present invention provides a low cost tag capable of operating at MHz frequencies and in frequency division and/or multiplication modes.
摘要:
A RF MOS- or nonlinear device-based surveillance and/or identification tag, and methods for its manufacture and use. The tag generally includes (a) an inductor, (b) a first capacitor plate coupled to the inductor, (c) a dielectric film on the first capacitor plate, (d) a semiconductor component on the dielectric film, and (e) a conductor that provides electrical communication between the semiconductor component and the inductor. The method of manufacture generally includes (1) depositing a semiconductor material (or precursor) on a dielectric film; (2) forming a semiconductor component from the semiconductor material/precursor; (3) forming a conductive structure at least partly on the semiconductor component; and (4) etching the electrically functional substrate to form (i) an inductor and/or (ii) a second capacitor plate. The method of use generally includes (i) causing/inducing a current in the present tag sufficient for it to generate detectable electromagnetic radiation; (ii) detecting the radiation; and optionally, (iii) selectively deactivating the tag. The present invention advantageously provides a low cost EAS/RFID tag capable of operating at MHz frequencies and in frequency division and/or frequency multiplication modes.
摘要:
A RF MOS- or nonlinear device-based surveillance and/or identification tag, and methods for its manufacture and use. The tag generally includes (a) an inductor, (b) a first capacitor plate coupled to the inductor, (c) a dielectric film on the first capacitor plate, (d) a semiconductor component on the dielectric film, and (e) a conductor that provides electrical communication between the semiconductor component and the inductor. The method of manufacture generally includes (1) depositing a semiconductor material (or precursor) on a dielectric film; (2) forming a semiconductor component from the semiconductor material/precursor; (3) forming a conductive structure at least partly on the semiconductor component; and (4) etching the electrically functional substrate to form (i) an inductor and/or (ii) a second capacitor plate. The method of use generally includes (i) causing/inducing a current in the present tag sufficient for it to generate detectable electromagnetic radiation; (ii) detecting the radiation; and optionally, (iii) selectively deactivating the tag. The present invention advantageously provides a low cost EAS/RFID tag capable of operating at MHz frequencies and in frequency division and/or frequency multiplication modes.
摘要:
A MOS transistor with a laser-patterned metal gate, and methods for its manufacture. The method generally includes forming a layer of metal-containing material on a dielectric film, wherein the dielectric film is on an electrically functional substrate comprising an inorganic semiconductor; laser patterning a metal gate from the metal-containing material layer; and forming source and drain terminals in the inorganic semiconductor in locations adjacent to the metal gate. The transistor generally includes an electrically functional substrate; a dielectric film on at least portions of the electrically functional substrate; a laser patterned metal gate on the dielectric film; and source and drain terminals comprising a doped inorganic semiconductor layer adjacent to the metal gate. The present invention advantageously provides MOS thin film transistors having reliable electrical characteristics quickly, efficiently, and/or at a low cost by eliminating one or more conventional photolithographic steps.
摘要:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
摘要:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
摘要:
An electronic device, including a substrate, a plurality of first semiconductor islands on the substrate, a plurality of second semiconductor islands on the substrate, a first dielectric film on the first subset of the semiconductor islands, second dielectric film on the second semiconductor islands, and a metal layer in electrical contact with the first and second semiconductor islands. The first semiconductor islands and the first dielectric film contain a first diffusible dopant, and the second semiconductor islands and the second dielectric layer film contain a second diffusible dopant different from the first diffusible dopant. The present electronic device can be manufactured using printing technologies, thereby enabling high-throughput, low-cost manufacturing of electrical circuits on a wide variety of substrates.
摘要:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.