Abstract:
A system includes an aftertreatment system heater of an exhaust aftertreatment system coupled to an engine A controller coupled to the aftertreatment system heater is configured to determine a condition of an exhaust gas from an engine and compare the condition to a predefined threshold. If the condition of the exhaust gas does not meet the predefined threshold, the controller is configured to determine whether an engine operating condition is met for activating a cylinder deactivation operating mode for the engine. If the engine operating condition is met, the controller is configured to operate the engine in the cylinder deactivation operating mode by deactivating a cylinder of a plurality of cylinders. If the engine operating condition is not met, the controller is configured to activate the aftertreatment system heater to heat the exhaust gas.
Abstract:
A system includes an aftertreatment system heater of an exhaust aftertreatment system coupled to an engine A controller coupled to the aftertreatment system heater is configured to determine a condition of an exhaust gas from an engine and compare the condition to a predefined threshold. If the condition of the exhaust gas does not meet the predefined threshold, the controller is configured to determine whether an engine operating condition is met for activating a cylinder deactivation operating mode for the engine. If the engine operating condition is met, the controller is configured to operate the engine in the cylinder deactivation operating mode by deactivating a cylinder of a plurality of cylinders. If the engine operating condition is not met, the controller is configured to activate the aftertreatment system heater to heat the exhaust gas.
Abstract:
A controller for controlling flow of coolant to one or more components of a vehicle is disclosed. The controller determines respective amounts of heat expected to be rejected by the one or more components of the vehicle in a steady state of operation at current operating conditions of the one or more components, and generates a feedforward flow control signal based at least in part on the determined amounts of heat and a target temperature for the one or more components. The controller generates a controller output signal based at least in part on the feedforward control signal, and provides the controller output signal to the cooling system to control flow of coolant to the one or more components of the vehicle from the cooling system in accordance with the determined amounts of heat expected to be rejected by the one or more components of the vehicle.
Abstract:
At least some embodiments of the present disclosure are directed to systems and methods for controlling a cylinder deactivation (CDA) operation for an electrified powertrain, the electrified powertrain comprising an engine and an additional power source, the engine having a plurality of cylinders. The method includes the step of operating the electrified powertrain in a CDA mode and deactivating one or more selected cylinders of the plurality of cylinders; receiving measurement data indicative of operating conditions of the electrified powertrain; analyzing the measurement data to determine whether a predetermined operating condition is met; and adjusting the CDA operation by adjusting the duration of the CDA operation or changing a number of deactivated cylinders.
Abstract:
At least some embodiments of the present disclosure are directed to systems and methods for controlling a cylinder deactivation (CDA) operation for an electrified powertrain, the electrified powertrain comprising an engine and an additional power source, the engine having a plurality of cylinders. The method includes the step of: operating the electrified powertrain in a CDA mode and deactivating one or more selected cylinders of the plurality of cylinders; receiving measurement data indicative of operating conditions of the electrified powertrain; analyzing the measurement data to determine whether a predetermined operating condition is met; and adjusting the CDA operation by adjusting the duration of the CDA operation or changing a number of deactivated cylinders.
Abstract:
Unique apparatuses, systems, methods, and techniques for control of engine systems are disclosed. One embodiment is a unique controls process providing engine start/stop functionality. In one form, the controls process includes engine stop controls which evaluate a plurality of engine stop request conditions and a plurality of engine stop capability conditions, as well as engine start controls which evaluate a plurality of engine start request conditions and a plurality of engine start capability conditions.
Abstract:
A method for managing emissions from a vehicle having an aftertreatment system is provided. The method includes: receiving, by a controller, information indicative of a temperature of an aftertreatment system of the vehicle and a power output of an engine of the vehicle; comparing, by the controller, the temperature of the aftertreatment system to a temperature threshold; comparing, by the controller, the power output to a power output threshold; and responsive to the comparisons, commanding, by the controller, an aftertreatment system heater to selectively engage and disengage to warm the aftertreatment system of the vehicle.
Abstract:
An internal combustion engine system includes an engine with a plurality of pistons housed in respective ones of a plurality of cylinders, an air intake system to provide air to the plurality of cylinders through respective ones of a plurality of intake valves, an exhaust system to release exhaust gas from the plurality of cylinders through respective one of a plurality of exhaust valves, an aftertreatment system to treat exhaust emission from the engine, and a controller coupled to at least one sensor and configured to control a cam phaser for thermal management of the aftertreatment system.
Abstract:
A system and method used to predict the state of health of a battery in a powertrain of a vehicle including a vehicle route profile generator arranged to generate a vehicle specific rout profile based on historical vehicle driving information, are disclosed. In one example, the system and method also include a powertrain model to convert the vehicle specific route profile to a predicted battery demand profile, and a state of health profile generator to generate a predicted state of health profile of the battery based on the predicted battery demand. In another example, the system further includes a vehicle performance manager arranged to generate a command to modify operation of the powertrain to extend battery life based on the vehicle specific route profile.
Abstract:
An engine starting system and technique include selecting a target engine speed profile from a plurality of engine speed profiles based on operator inputs and operating parameters of the vehicle. A feedback control strategy is used to substantially conform the engine speed with the target speed profile during starting until a target speed is reached in which fueling is initiated to start the engine.