摘要:
Methods, devices, and systems are provided for a select device that can include a semiconductive stack of at least one semiconductive material formed on a first electrode, where the semiconductive stack can have a thickness of about 700 angstroms (Å) or less. Each of the at least one semiconductive material can have an associated band gap of about 4 electron volts (eV) or less and a second electrode can be formed on the semiconductive stack.
摘要:
Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.
摘要:
Resistive memory cells including an integrated select device and storage element and methods of forming the same are described herein. As an example, a resistive memory cell can include a select device structure including a Schottky interface, and a storage element integrated with the select device structure such that an electrode corresponding to the Schottky interface serves as a first electrode of the storage element. The storage element can include a storage material formed between the first electrode and a second electrode.
摘要:
Some embodiments include electronic devices having two capacitors connected in series. The two capacitors share a common electrode. One of the capacitors includes a region of a semiconductor substrate and a dielectric between such region and the common electrode. The other of the capacitors includes a second electrode and ion conductive material between the second electrode and the common electrode. At least one of the first and second electrodes has an electrochemically active surface directly against the ion conductive material. Some embodiments include memory cells having two capacitors connected in series, and some embodiments include memory arrays containing such memory cells.
摘要:
Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
摘要:
Some embodiments include memory cells. The memory cells may include a tunnel dielectric material, a charge-retaining region over the tunnel dielectric material, crystalline ultra-high k dielectric material over the charge-retaining region, and a control gate material over the crystalline ultra-high k dielectric material. Additionally, the memory cells may include an amorphous region between the charge-retaining region and the crystalline ultra-high k dielectric material, and/or may include an amorphous region between the crystalline ultra-high k dielectric material and the control gate material. Some embodiments include methods of forming memory cells which contain an amorphous region between a charge-retaining region and a crystalline ultra-high k dielectric material, and/or which contain an amorphous region between a crystalline ultra-high k dielectric material and a control gate material.
摘要:
A memory cell is provided including a tunnel dielectric layer overlying a semiconductor substrate. The memory cell also includes a floating gate having a first portion overlying the tunnel dielectric layer and a second portion in the form of a nanorod extending from the first portion. In addition, a control gate layer is separated from the floating gate by an intergate dielectric layer.
摘要:
Some embodiments include memory structures having a diode over a memory cell. The memory cell can include programmable material between a pair of electrodes, with the programmable material containing a multivalent metal oxide directly against a high-k dielectric. The diode can include a first diode electrode directly over one of the memory cell electrodes and electrically coupled with the memory cell electrode, and can include a second diode electrode laterally outward of the first diode electrode and not directly over the memory cell. Some embodiments include memory arrays comprising the memory structures, and some embodiments include methods of making the memory structures.
摘要:
Memories, systems, and methods for forming memory cells are disclosed. One such memory cell includes a charge storage node that includes nanodots over a tunnel dielectric and a protective film over the nanodots. In another memory cell, the charge storage node includes nanodots that include a ruthenium alloy. Memory cells can include an inter-gate dielectric over the protective film or ruthenium alloy nanodots and a control gate over the inter-gate dielectric. The protective film and ruthenium alloy can be configured to protect at least some of the nanodots from vaporizing during formation of the inter-gate dielectric.
摘要:
Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.