Abstract:
An energy emitting apparatus for providing a medical therapy includes one or more energy generators, a logic controller connected to the one or more energy generators, and optionally one or more sensors that are connected to the logic controller for detecting muscle stimulation or electric conduction in a target nerve. The energy generators produce energy focused on the target nerve upon receiving a signal from the logic controller, and the energy can be varied by the logic controller according to an input provided by the one or more sensors. In certain embodiments, the energy emitting apparatus includes one or more conductive coils that produce a magnetic field focused on the target nerve upon receiving an electric current. In certain embodiments, a variety of cooling mechanisms or systems may be implemented for cooling the coil.
Abstract:
An automated therapy system having an infusion catheter; a sensor adapted to sense a patient parameter; and a controller communicating with the sensor and programmed to control flow output from the infusion catheter into a patient based on the patient parameter without removing fluid from the patient. The invention also includes a method of controlling infusion of a fluid to a patient. The method includes the following steps: monitoring a patient parameter with a sensor to generate a sensor signal; providing the sensor signal to a controller; and adjusting fluid flow to the patient based on the sensor signal without removing fluid from the patient.
Abstract:
An energy emitting apparatus for providing a medical therapy includes one or more energy generators, a logic controller electrically connected to the one or more energy generators, and one or more sensors for detecting electric conduction in a target nerve that are connected to the logic controller. The one or more energy generators produce energy focused on the target nerve upon receiving a signal from the logic controller, and the energy is varied by the logic controller according to an input provided by the one or more sensors. In one embodiment, the energy emitting apparatus is an apparatus for magnetic induction therapy that includes one or more conductive coils disposed in an ergonomic housing that produce a magnetic field focused on the target nerve upon receiving an electric current from the logic controller based on an input provided by the one or more sensors.
Abstract:
An energy emitting apparatus for providing a medical therapy includes one or more energy generators, a logic controller electrically connected to the one or more energy generators, and one or more sensors for detecting electric conduction in a target nerve that are connected to the logic controller. The one or more energy generators produce energy focused on the target nerve upon receiving a signal from the logic controller, and the energy is varied by the logic controller according to an input provided by the one or more sensors. In one embodiment, the energy emitting apparatus is an apparatus for magnetic induction therapy that includes one or more conductive coils disposed in an ergonomic housing that produce a magnetic field focused on the target nerve upon receiving an electric current from the logic controller based on an input provided by the one or more sensors.
Abstract:
Energy emitting systems are provided which include an adjustable conductive coil configured to generate a magnetic or electromagnetic field focused on a target nerve. The coil includes a central aperture which may be adjustable between a first configuration and a second configuration having a radius greater than the radius of the first configuration. The adjustable or movable nature of the coil allows the conductive coil to conform to, accommodate, or be positioned on a particular anatomical structure of a patient to position the coil in proximity to the underlying target nerve. In certain embodiments, methods of magnetic induction therapy are provided which include positioning a conductive coil relative to a portion of a patient's body by adjusting the central aperture of the coil such that the coil may conform to, accommodate or be positioned on the portion of the patient's body in proximity to the underlying target nerve.
Abstract:
Provided are ingestible polymeric formulations and oral dosage forms for the reduction of gastric volume in the treatment of overweight and obese patients. The formulation includes an acid-sensitive, gelatin coating over a dehydrated hydrophilic polymer. When ingested, the acid-sensitive coating is quickly dissolved by gastric secretions and the hydrophilic polymer is exposed to the aqueous environment of the gastric milieu. The polymer absorbs water and expands to the point that will not allow the polymer to pass beyond the pyloric valve, and the expanded polymer is therefore trapped in the stomach.
Abstract:
A device for draining bodily fluids is described herein which generally may comprise an elongate body defining one or more lumens configured to receive a bodily fluid from a cavity, e.g., bladder, of a patient body. The one or more lumens are in fluid communication with a reservoir which may receive the bodily fluid. A pumping mechanism may be used to urge the bodily fluid through the one or more lumens, where the pumping mechanism is configured to maintain an open space within the one or more lumens such that outflow of the bodily fluid through the one or more lumens remains unobstructed such that a negative pressure buildup in the cavity is inhibited. The device may also include a vent or valve mechanism in communication with the elongate body to allow air to enter or exit the one or more lumens.
Abstract:
Foley type catheter embodiments for sensing physiologic data from a urinary tract of a patient are disclosed. The system includes the catheter and a data processing apparatus and methods for sensing physiologic data from the urinary tract. Embodiments may also include a pressure sensor having a pressure interface at a distal end of the catheter, a pressure transducer at a proximal end, and a fluid column disposed between the pressure interface and transducer. When the distal end is residing in the bladder, the pressure transducer can transduce pressure impinging on it into a chronological pressure profile, which can be processed by the data processing apparatus into one or more distinct physiologic pressure profiles, for example, peritoneal pressure, respiratory rate, and cardiac rate. At a sufficiently high data-sampling rate, these physiologic data may further include relative pulmonary tidal volume, cardiac output, relative cardiac output, and absolute cardiac stroke volume.
Abstract:
Methods and apparatus for measuring pressure in a patient are provided which may include any number of features. One feature is a pressure measurement system comprising a pressure source, a compliant bladder, a catheter in communication with the pressure source, pressure sensors, and a controller configured to determine a pressure within the compliant bladder. The pressure measurement system can inflate the compliant bladder with gas or air to determine a pressure within a patient. In one embodiment, the pressure measurement system measures pressure within a peritoneal cavity.
Abstract:
Methods and apparatus for the treatment of a body cavity or lumen are described where a heated fluid and/or gas may be introduced through a catheter and into treatment area within the body contained between one or more inflatable/expandable members. The catheter may also have optional pressure sensing elements which may allow for control of the pressure within the treatment zone and also prevent the pressure from exceeding a pressure of the inflatable/expandable members to thereby contain the treatment area between these inflatable/expandable members. Optionally, a chilled or room temperature fluid such as water may then be used to rapidly terminate the treatment session.