摘要:
A method and apparatus are provided for producing fine quality pnictide films by vacuum evaporation and molecular beam deposition. A pnictide source, preferably phosphorous, is heated to produce a continuous supply of vapor species, preferably P.sub.4. The vapor species is cracked by a heated tungsten wire positioned adjacent the pnictide source to produce P.sub.2 molecules. A second tungsten wire cracker is located adjacent a substrate to prevent the recombination of P.sub.2 molecules into P.sub.4 molecules. The P.sub.2 molecules are deposited on the substrate and condense into amorphous pure phosphorous shiny red films. A separate source of alkali metal intercalate, preferably KC.sub.8, may also be heated to provide an alkali metal vapor for producing films of alkali metal polypnictide films, preferably KP.sub.x where x is equal to or greater than 15, to be deposited on the substrate. Fine quality films may also be deposited on a substrate by a molecular beam apparatus providing a continuous source of pnictide vapor species and a cracker disposed between the exit of a pnictide collimator and the substrate.
摘要:
Fine quality catenated phosphorus thin films are produced in a high vacuum evaporator. Heated tungsten wire crackers are provided above the phosphorus boat and below the substrates. Amorphous pure phosphorus shiny red films have been deposited on glass, metallized glass and GaP and exhibit an optical edge at 2.0 eV. Films of KP.sub.x where x is equal to 15 or greater than 15 are produced by utilizing a second baffled boat source containing the potassium graphite intercalate, KC.sub.8. Addition of a nickel evaporation source provides nickel-doped polyphosphide films.
摘要:
Metal-insulator-semiconductor devices are formed on III-V semiconductors utilizing a pnictide rich insulating layer. The layer may be applied by vacuum evaporation, sputtering, chemical vapor deposition, and from a liquid melt. Gallium arsenide, indium phosphide, and gallium phosphide substrates are insulated with an alkali metal high pnictide polypnictide, preferably a polyphosphide, having the formula MP.sub.x where x is equal to or greater than 15, including new forms of phosphorus grown in the presence of an alkali metal where x is much greater than 15. A KP.sub.15 layer is preferred. They may also be insulated with a layer of a solid elemental pnictide, namely phosphorus, arsenic, antimony or bismuth applied by one of the above named processes. An elemental phosphorus layer is preferred. A silicon nitride, Si.sub.3 N.sub.4, layer may be added on top of the pnictide layer to increase the breakdown voltage of the insulating layer.
摘要:
A method for performing operations on a structure. A moveable platform may be positioned in an area relative to the structure to define a working envelope. The moveable platform may be connected to a tool that may be moved around a plurality of axes within the working envelope using the moveable platform. The tool may be moved to a plurality of locations within the working envelope using the moveable platform. An operation may be performed with the tool through the working envelope at each of the plurality of locations using the moveable platform.
摘要:
The present invention is directed to apparatus and methods for clamping along a work piece. In one embodiment, a clamping system includes one or more force applying units each including a plunger or force applying member adapted to apply clamping force to the work piece, and one or more coupling units linked with the force applying units forming a chain of force applying units and coupling units. The coupling units may include a lockable pivot adapted to pivot to conform the chain to the surface of the work piece when unlocked, and adapted to be locked when at least one of the plurality of force applying units applies clamping force to the work piece. In another embodiment, a clamping system may include multi-axis pivot units. In a further embodiment, a clamping system may include length adjusting units.
摘要:
A clamping system can be reconfigured to clamp any of multiple workpieces having differing shapes. The system includes a retention assembly for retaining an inflatable bladder that applies a clamping force to the workpiece. The retention assembly includes a flexible chain of pivotally connected links that can be locked in place to form a rigid assembly that conforms to the shape of the workpiece. The links can be unlocked to allow reconfiguration of the retention assembly into shapes matching other workpieces.
摘要:
An apparatus and method for separating a pin tool from a shoulder tool, after the pin tool and shoulder tool have become welded together during a friction stir welding operation. In one exemplary embodiment a frame is used to support the shoulder tool. A fluid pressure actuating assembly is used for gradually exerting a force on the pin tool while the shoulder tool is held stationary within the frame. The gradually increasing force gradually breaks the weld and separates the pin tool from the shoulder tool without damaging the pin tool.
摘要:
A method of manufacturing a workpiece is provided. The method generally includes friction stir welding at least one structural member, selectively removing material from the surfaces of the workpiece at the location of a friction stir weld joint, and thereafter subjecting the workpiece to a solution treat, quench, and age treatment. By selectively removing regions from the surfaces of the workpiece that are defined by nonuniform material properties adapted to nucleate nonuniform grain growth during the solution treat, quench, and age treatment, a subsequent grain growth during the thermal treatment can be at least partially prevented.
摘要:
High phosphorus polyphosphides, namely MP.sub.x, where M is an alkali metal (Li, Na, K, Rb, and Cs) or metals mimicking the bonding behavior of an alkali metal, and x=7 to 15 or very much greater than 15 (new forms of phosphorus) are useful semiconductors in their crystalline, polycrystalline and amorphous forms (boules and films). MP.sub.15 appears to have the best properties and KP.sub.15 is the easier to synthesize. P may include other pnictides as well as other trivalent atomic species. Resistance lowering may be accomplished by doping with Ni, Fe, Cr, and other metals having occupied d or f outer electronic levels; or by incorporation of As and other pnictides. Top contacts forming junction devices doped with Ni and employing Ni as a back contact comprise Cu, Al, Mg, Ni, Au, Ag, and Ti. Photovoltaic, photoresistive, and photoluminescent devices are also disclosed. All semiconductor applications appear feasible.These semiconductors belong to the class of polymer forming, trivalent atomic species forming homatomic, covalent bonds having a coordination number slightly less than 3. The predominant local order appears to be all parallel pentagonal tubes in all forms, including amorphous, except for the monoclinic and twisted fiber allotropes of phosphorus.Large crystal monoclinic phosphorus (a birefringent material) in two habits, a twisted fiber phosphorus allotrope and a star shaped fibrous high phosphorus material are also disclosed.Single and multiple source vapor transport, condensed phase, melt quench, flash evaporation, chemical vapor deposition, and molecular flow deposition may be employed in synthesizing these materials. Vapor transport may be employed to purify phosphorus.
摘要:
High phosphorus polyphosphides, namely MP.sub.x, where M is an alkali metal (Li, Na, K, Rb, and Cs) or metals mimicking the bonding behavior of an alkali metal, and x=7 to 15 or very much greater than 15 (new forms of phosphorus) are useful semiconducutors in their crystalline, polycrystalline and amorphous forms (boules and films). MP.sub.15 appears to have the best properties and KP.sub.15 is the easier to synthesize. P may include other pnictides as well as other trivalent atomic species. Resistance lowering may be accomplished by doping with Ni, Fe, Cr, and other metals having occupied d or f outer electronic levels; or by incorporation of As and other pnictides. Top contacts forming junction devices doped with Ni and employing Ni as a back contact comprise Cu, Al, Mg, Ni, Au, Ag, and Ti. Photovoltaic, photoresistive, and photoluminescent devices are also disclosed. All semiconductor applications appear feasible.These semiconductors belong to the class of polymer forming, trivalent atomic species forming homatomic, covalent bonds having a coordination number slightly less than 3. The predominant local order appears to be all parallel pentagonal tubes in all forms, including amorphous, except for the monoclinic and twisted fiber allotropes of phosphorus.Large crystal monoclinic phosphorus (a birefringent material) in two habits, a twisted fiber phosphorus allotrope and a star shaped fibrous high phosphorus material are also disclosed.Single and multiple source vapor transport, condensed phase, melt quench, flash evaporation, chemical vapor deposition, and molecular flow deposition may be employed in synthesizing these materials. Vapor transport may be employed to purify phosphorus.The materials may be employed as protective coatings, optical coatings, fire retardants, fillers and reinforcing fillers for plastics and glasses, antireflection coatings for infrared optics, infrated transmitting windows, and optical rotators.