摘要:
A plug assembly for use in the plug drawing of tubes and like hollow workpieces. In axial succession, from front to rear, the plug comprises three parts in fixed relationship to each other: a foremost first part with a smoothly rounded nose to make smooth and positive contact with the tube at the start of drawing, a parallel-sided middle part which sizes the interior section of the product as drawing proceeds, and a long rearmost part of larger section. During drawing the confronting surfaces of the rear part and the bore of the undrawn tube define a thin cylindrical clearance, relative movement between the walls of which exercises a hydrodynamic action upon lubricant lying within the tube rearward of the plug, forcing that lubricant forward through the clearance into the region where tube and plug first make contact. Alternative plug shapes for the third part of the plug are proposed, including parallel-sided, stepped and sloping.
摘要:
An insulated lead frame for a semiconductor packaged device and a method of manufacturing both the insulated lead frame and the semiconductor packaged device are disclosed. The insulated lead frame has a first plurality of lead fingers and a second plurality of lead fingers. It also has the face of a power supply bus lying between the pluralities of lead fingers. An insulator covers the face of the power supply bus. An example of an insulator is a cured liquid polyimide. In a semiconductor packaged device using a lead on chip lead frame, such as a dynamic random access memory, DRAM, wire bonding that connects the power supply busses of the lead frame may first occur and the liquid insulator may afterwards be applied to the power supply busses. Alternatively, by knowing where the wire bonds will bond to the power supply busses, the liquid insulator may be applied to the power supply busses before wire bonding occurs. The bonding spots on the power supply busses are not covered with the liquid insulator. Both methods serve to reduce the possibility of shorting between the power supply busses and the crossing wire bonds that connect the lead fingers of the lead frame to the bonding pads of the integrated circuit.
摘要:
A comb insert for semiconductor packaged devices is disclosed. The comb is conductive and thus useful to function as a power supply bus in transferring power to the semiconductor die. A base, formed out of a conductive material, resides underneath the lead fingers of the semiconductor packaged device, electrically isolated from the lead fingers. The base has teeth extending from it, also formed out of the conductive material, that reside between the lead fingers of the semiconductor packaged device. Some of the teeth are electrically connected to the lead fingers for receiving external power. Some of the teeth are electrically connected to the bonding pads of the semiconductor die. Power is transferred from the lead fingers for receiving it, through the teeth electrically connected to these lead fingers, through the base, through the teeth electrically connected to the bonding pads, and to the semiconductor die. Utilizing the comb insert in a lead on chip lead frame semiconductor packaged device solves the problem of wire bond shorting to the power supply bus portions of the lead frame.
摘要:
A semiconductor package device is disclosed. In one embodiment, attached by its active face to a lead-on-chip leadframe having leadfingers is an integrated circuit. The integrated circuit has a polyimide coating on its backside. An encapsulating material surrounds the integrated circuit and the lead-on-chip leadframe so that the leadfingers are exposed. The polyimide coating on the backside of the integrated circuit helps to reduce package cracking arising from mounting the device to a printed circuit board by relflow solder.
摘要:
A semiconductor package device is disclosed. In one embodiment, attached by its active face to a lead-on-chip leadframe having leadfingers is an integrated circuit. The integrated circuit has a polyimide coating on its backside. An encapsulating material surrounds the integrated circuit and the lead-on-chip leadframe so that the leadfingers are exposed. The polyimide coating on the backside of the integrated circuit helps to reduce package cracking arising from mounting the device to a printed circuit board by relflow solder.
摘要:
A conductive tape for a packaged semiconductor device is disclosed. The tape contains a first adhesive layer, a base film on top of the first adhesive layer, a conductive layer on top of the base film layer, and a second adhesive layer on top of the conductive layer. Metal may form the conductive layer. The tape may have slits, slots, or apertures in it so that electrical connection may be made to the conductive layer. Such a tape is useful in lead on chip integrated circuit packages to connect the semiconductor die to the lead frame and to function as a power supply bus by transferring power to the semiconductor die. Wire bonds extending through slots in the second adhesive layer form electrical connection from the lead fingers for receiving power to the conductive layer of the tape. Wire bonds extending from the bonding pads of the semiconductor die through slots the second adhesive layer form electrical connection from the semiconductor die to the conductive layer.
摘要:
The degree of wire sweep and wire clearance over the buss bars in the 16 Mega Bit LOC package is found to be dependent on the angle of the bond wires. A positive wire angle range of 5 to 15 degrees is recommended for minimum wire sweep and maximum wire clearance over the buss bars. This is so because they offer the least resistance to the flow of the mold compound during transfer molding. A staggered gating system ensures that the wire angles in all cavities are positive with respect to the gate. This invention is also applicable to conventional packages.
摘要:
A conductive tape for a packaged semiconductor device is disclosed. The tape contains a first adhesive layer, a base film on top of the first adhesive layer, a conductive layer on top of the base film layer, and a second adhesive layer on top of the conductive layer. Metal may form the conductive layer. The tape may have slits, slots, or apertures in it so that electrical connection may be made to the conductive layer. Such a tape is useful in lead on chip integrated circuit packages to connect the semiconductor die to the lead frame and to function as a power supply bus by transferring power to the semiconductor die. Wire bonds extending through slots in the second adhesive layer form electrical connection from the lead fingers for receiving power to the conductive layer of the tape. Wire bonds extending from the bonding pads of the semiconductor die through slots the second adhesive layer form electrical connection from the semiconductor die to the conductive layer.
摘要:
A semiconductor package device is disclosed. In one embodiment, attached by its active face to a lead-on-chip leadframe having leadfingers is an integrated circuit. The integrated circuit has a roughened backside. An encapsulating material surrounds the integrated circuit and the lead-on-chip leadframe so that the leadfingers are exposed. The roughened backside surface helps to reduce package cracking arising from mounting the device to a printed circuit board by reflow solder.
摘要:
An insulated lead frame is disclosed. The lead frame has a first plurality of lead fingers and a second plurality of lead fingers. It also has a power supply bus lying between the first plurality of lead fingers and the second plurality of lead fingers. An insulating strip lies on a face of the power supply bus near an edge of the face. Examples of a suitable dielectric strip are an adhesive type tape, such as a polyimide tape, and a nonconductive liquid, such as liquid polyimide. An insulated lead frame is useful in the manufacture of packaged semiconductor integrated circuit devices to reduce the possibility of wire bond shorting to the power supply busses. One example is a dynamic random access memory, DRAM, die having centrally disposed bonding pads mounted to a lead on chip lead frame. The power supply busses of the lead on chip lead frame have dielectric strips running along their edges to reduce the possibility of shorting between the power supply busses and the crossing wire bonds that connect the lead fingers of the lead frame to the bonding pads of the DRAM.