摘要:
A processing end point detection method detects a timing of a processing end point (e.g., polishing stop, changing of polishing conditions) by calculating a characteristic value of a surface of a workpiece (an object of polishing) such as a substrate. This method includes producing a spectral waveform indicating a relationship between reflection intensities and wavelengths at a processing end point, with use of a reference workpiece or simulation calculation, based on the spectral waveform, selecting wavelengths of a local maximum value and a local minimum value of the reflection intensities, calculating the characteristic value with respect to a surface, to be processed, from reflection intensities at the selected wavelengths, setting a distinctive point of time variation of the characteristic value at a processing end point of the workpiece as the processing end point, and detecting the processing end point of the workpiece by detecting the distinctive point during processing of the workpiece.
摘要:
A polishing apparatus capable of achieving a highly-precise polishing result is disclosed. The polishing apparatus includes an in-line film-thickness measuring device configured to measure a film thickness of the substrate in a stationary state, and an in-situ spectral film-thickness monitor having a film thickness sensor disposed in a polishing table, the in-situ spectral film-thickness monitor being configured to subtract an initial film thickness, measured by the in-situ spectral film-thickness monitor before polishing of the substrate, from an initial film thickness, measured by the in-line film-thickness measuring device before polishing of the substrate, to determine a correction value, add the correction value to a film thickness that is measured when the substrate is being polished to obtain a monitoring film thickness, and monitor a progress of polishing of the substrate based on the monitoring film thickness.
摘要:
A method of polishing end point detection includes polishing a surface of a substrate; applying light to the surface of the substrate and receiving reflected light from the substrate during the polishing of the substrate; measuring reflection intensities of the reflected light at respective wavelengths; creating a spectral profile indicating a relationship between reflection intensity and wavelength from the reflection intensities measured; extracting at least one extremal point indicating extremum of the reflection intensities from the spectral profile; during polishing of the substrate, repeating the creating of the spectral profile and the extracting of the at least one extremal point to obtain plural spectral profiles and plural extremal points; and detecting the polishing end point based on an amount of relative change in the extremal point between the plural spectral profiles.
摘要:
A polishing apparatus for polishing a substrate is provided. The polishing apparatus includes: a polishing table holding a polishing pad; a top ring configured to press the substrate against the polishing pad; first and second optical heads each configured to apply the light to the substrate and to receive reflected light from the substrate; spectroscopes each configured to measure at each wavelength an intensity of the reflected light received; and a processor configured to produce a spectrum indicating a relationship between intensity and wavelength of the reflected light. The first optical head is arranged so as to face a center of the substrate, and the second optical head is arranged so as to face a peripheral portion of the substrate.
摘要:
The present invention provides an apparatus and a method for polishing a substrate having a film formed thereon. The method includes: rotating a polishing table supporting a polishing pad by a table motor; pressing the substrate against the polishing pad by a top ring; obtaining a signal containing a thickness information of the film; producing from the signal a polishing index value that varies in accordance with a thickness of the film; monitoring a torque current value of the table motor and the polishing index value; and determining a polishing end point based on a point of time when the torque current value has reached a predetermined threshold value or a point of time when a predetermined distinctive point of the polishing index value has appeared, whichever comes first.
摘要:
A method accurately monitors the progress of polishing and accurately detects the polishing end point. The method includes directing light to the substrate during polishing of the substrate, receiving reflected light from the substrate, measuring an intensity of the reflected light at each wavelength, and producing a spectrum indicating a relationship between intensity and wavelength from measured values of the intensity. The method also includes calculating an amount of change in the spectrum per predetermined time, integrating the amount of change in the spectrum with respect to polishing time to obtain an amount of cumulative change in the spectrum, and monitoring the progress of polishing of the substrate based on the amount of cumulative change in the spectrum.
摘要:
A polishing method capable of obtaining a stable film thickness without being affected by a difference in measurement position is disclosed. The polishing method includes: rotating a polishing table that supports a polishing pad; pressing the surface of the wafer against the polishing pad; obtaining a plurality of film-thickness signals from a film thickness sensor during a latest predetermined number of revolutions of the polishing pad, the film thickness sensor being installed in the polishing table; determining a plurality of measured film thicknesses from the plurality of film-thickness signals; determining an estimated film thickness at a topmost portion of the raised portion based on the plurality of measured film thicknesses; and monitoring polishing of the wafer based on the estimated film thickness at the topmost portion of the raised portion.
摘要:
The polishing device includes an edge chamber that presses the surface to be polished against the polishing pad by pressing a back side of the surface to be polished of the wafer, a thickness measuring unit that estimates a remaining film profile of the surface to be polished of the wafer in realtime during polishing, and a closed loop control device that controls a pressing force on the back side of the surface to be polished by the edge chamber in accordance with a measurement result by the thickness measuring unit during polishing. The closed loop control device controls not only the pressing by the edge chamber during polishing, but also the pressure of a retainer ring as a periphery of the edge chamber affecting the pressing of the surface to be polished against the polishing pad.
摘要:
The present invention relates to a polishing method and a polishing apparatus for polishing a substrate such as a wafer while measuring a film thickness based on optical information included in reflected light from the substrate. The polishing method includes preparing a plurality of spectrum groups each containing a plurality of reference spectra corresponding to different film thicknesses; directing light to a substrate and receiving reflected light from the substrate; producing, from the reflected light, a sampling spectrum for selecting a spectrum group; selecting a spectrum group containing a reference spectrum which is closest in shape to the sampling spectrum; producing a measurement spectrum for obtaining a film thickness while polishing the substrate; selecting, from the selected spectrum group, a reference spectrum which is closest in shape to the measurement spectrum that has been produced when the substrate is being polished; and obtaining a film thickness corresponding to the selected reference spectrum.
摘要:
A polishing apparatus for polishing a substrate is provided. The polishing apparatus includes: a polishing table holding a polishing pad; a top ring configured to press the substrate against the polishing pad; first and second optical heads each configured to apply the light to the substrate and to receive reflected light from the substrate; spectroscopes each configured to measure at each wavelength an intensity of the reflected light received; and a processor configured to produce a spectrum indicating a relationship between intensity and wavelength of the reflected light. The first optical head is arranged so as to face a center of the substrate, and the second optical head is arranged so as to face a peripheral portion of the substrate.