Abstract:
The eddy current sensor for measuring the film thickness of a conductive film formed on a substrate includes a core made of a magnetic material that has a base portion, and outer legs provided to the base portion at both end portions in a first direction of the base portion respectively, an excitation coil that is arranged on the core and forms an eddy current in the conductive film, and a detection coil that is arranged on the core and detects the eddy current formed in the conductive film. The length of the base portion in the first direction is not less than the length of the base portion in a second direction that is substantially orthogonal to the first direction.
Abstract:
A polishing head system capable of precisely controlling a film-thickness profile of a workpiece, such as a wafer, substrate, or panel, is disclosed. The polishing head system includes a polishing head having a plurality of piezoelectric elements configured to apply pressing forces to a workpiece, and an operation controller configured to determine instruction values of voltages to be applied to the plurality of piezoelectric elements.
Abstract:
A polishing method capable of obtaining a stable film thickness without being affected by a difference in measurement position is disclosed. The polishing method includes: rotating a polishing table that supports a polishing pad; pressing the surface of the wafer against the polishing pad; obtaining a plurality of film-thickness signals from a film thickness sensor during a latest predetermined number of revolutions of the polishing pad, the film thickness sensor being installed in the polishing table; determining a plurality of measured film thicknesses from the plurality of film-thickness signals; determining an estimated film thickness at a topmost portion of the raised portion based on the plurality of measured film thicknesses; and monitoring polishing of the wafer based on the estimated film thickness at the topmost portion of the raised portion.
Abstract:
The method includes: calculating an increment of a sliding distance of a dresser by multiplying a relative speed between the dresser and a polishing member by a contact time between them; correcting the increment of the sliding distance by multiplying the calculated increment of the sliding distance by at least one correction coefficient; calculating the sliding distance by repeatedly adding the corrected increment of the sliding distance to the sliding distance according to elapse of time; and producing the sliding-distance distribution of the dresser from the obtained sliding distance and a position of a sliding-distance calculation point. The at least one correction coefficient includes an unevenness correction coefficient provided for the sliding-distance calculation point. The unevenness correction coefficient is a correction coefficient that allows a profile of the polishing member to reflect a difference between an amount of scraped material of the polishing member in its raised portion and an amount of scraped material of the polishing member in its recess portion.
Abstract:
A magnetic element for strengthening a magnetic field formed in an object and an eddy current sensor using the magnetic field are provided. The eddy current sensor includes a bottom face portion which is a magnetic body, a magnetic core portion provided at the middle of the bottom face portion and a peripheral wall portion provided on the periphery of the bottom face portion. The eddy current sensor further includes an excitation coil disposed on an outer periphery of the magnetic core portion and capable of generating a magnetic field and an excitation coil disposed on an outer periphery of the peripheral wall portion and capable of generating a magnetic field.
Abstract:
One object is to provide a polishing machine and a polishing method capable of improving a processing accuracy on the surface of an object. A method of polishing an object is provided. Such a method comprises: a first step of polishing an object by moving the object and a first polishing pad having a smaller dimension than that of the object relative to each other while the first polishing pad is made to contact the object, a second step of polishing the object, after the first step of polishing, by moving the object and a second polishing pad having a larger dimension than that of the object relative to each other while the second polishing pad is made to contact the object, and a step of detecting the state of the surface of the object before the first step of polishing.
Abstract:
To measure thickness in a polishing treatment more efficiently. A substrate polishing apparatus comprises a rotatably configured polishing table provided with a sensor that outputs a signal related to a thickness, a rotatably configured polishing head that faces the polishing table, a substrate being attachable to a face of the polishing head that faces the polishing table, and a controller. The controller acquires a signal from the sensor when the sensor passes over a surface to be polished of the substrate, specifies an orbit of the sensor with respect to the substrate on a basis of a profile of the signal, calculates a thickness of the substrate at each point on the orbit on a basis of the signal, and creates a thickness map on a basis of the calculated thickness at each point on a plurality of orbits of the sensor.
Abstract:
An object of the present invention is to improve a substrate processing apparatus using the CARE method.The present invention provides a substrate processing apparatus for polishing a processing target region of a substrate by bringing the substrate and a catalyst into contact with each other in the presence of processing liquid. The substrate processing apparatus includes a substrate holding unit configured to hold the substrate, a catalyst holding unit configured to hold the catalyst, and a driving unit configured to move the substrate holding unit and the catalyst holding unit relative to each other with the processing target region of the substrate and the catalyst kept in contact with each other. The catalyst is smaller than the substrate.
Abstract:
An eddy current sensor has an exciting coil and a detection coil. A holding circuit holds reference data indicating a characteristic of an output signal output from the detection coil at a reference state and outputs the reference data at a state other than the reference state. A pseudo signal generating circuit generates and outputs a balance coil pseudo signal corresponding to the output signal output from the detection coil at the reference state from the reference data output from the holding circuit. A bridge circuit, at the state other than the reference state, receives the output signal output from the detection coil and the balance coil pseudo signal and outputs a bridge output signal corresponding to a difference between the output signal and the balance coil pseudo signal as a bridge output signal.