Abstract:
Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is lower than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
Abstract:
Provided is an optical communication device according to an embodiment of the inventive including a carrier substrate, a printed circuit board provided on one side of the carrier substrate in a first direction, electro-absorption modulator-integrated laser chips provided on the other side of the carrier substrate, an interposer provided on the electro-absorption modulator-integrated laser chips and the printed circuit board, and capacitors, which are provided on the interposer and each of which is shorter than each of the electro-absorption modulator-integrated laser chips and is thicker than the electro-absorption modulator-integrated laser chip.
Abstract:
Provided is a method of manufacturing a ridge waveguide type semiconductor laser diode, the method including sequentially forming, on a substrate, a lower clad layer, an active layer, a first upper clad layer, and a second upper clad layer; forming an insulating mask on the second upper clad layer; wet-etching the second upper clad layer by using the insulating mask to form channels passing through the second upper clad layer and a ridge between the channels; and performing dry-etching by using the insulating mask to form trenches that are extended from the channels and pass through the first upper clad layer.
Abstract:
Provided is an optical device. The optical device includes a substrate having a waveguide region and a mounting region, a planar lightwave circuit (PLC) waveguide including a lower-clad layer d an upper-clad layer on the waveguide region of the substrate and a platform core between the lower-clad layer and the upper-clad layer, a terrace defined by etching the lower-clad layer on the mounting region of the substrate, the terrace including an interlocking part, an optical active chip mounted on the mounting region of the substrate, the optical active chip including a chip core therein, and a chip alignment mark disposed on a mounting surface of the optical active chip. The optical active chip is aligned by interlocking between the interlocking part of the terrace and the chip alignment mark of the optical active chip and mounted on the mounting region.
Abstract:
An optical waveguide structure includes a substrate and a core structure disposed on the substrate. The substrate includes a first waveguide region, a second waveguide region, and a transition region between the first waveguide region and the second waveguide region. The core structure includes first core segments arranged in a first direction and a second direction crossing the first direction on the transition region. The core structure includes second core segments arranged in the first direction and the second direction on the second waveguide region. The first direction and the second direction are parallel to a top surface of the substrate.
Abstract:
Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is lower than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.
Abstract:
Disclosed are a Mach-Zehnder interferometric optical modulator and a method for manufacturing the same. The modulator includes first and second lower clad layers stacked on a substrate, a core layer on the first and second lower clad layers, a first upper clad layer on the core layer, a second upper clad layer on the first upper clad layer, and electrodes on the second upper clad layer. The second upper clad layer includes an input waveguide, an output waveguide spaced apart from the input waveguide, branch waveguides branched from the input waveguide and coupled to the output waveguide, and insulating blocks provided on both outer sides of the branch waveguides.
Abstract:
Disclosed is an optical transmitter module including a directly modulated laser transmitter based on a directly modulated laser (DML) and an arrayed waveguide grating (AWG) chip that is vertically polished. The directly modulated laser transmitter includes a directly modulated laser chip array including one or more directly modulated laser chips, an impedance matching circuit that allows each of the one or more directly modulated laser chips to operate at a critical speed of 100 Gbps per channel or higher, and a radio frequency-flexible printed circuit board (RF-FPCB) that transmits a radio frequency (RF) modulating signal to the directly modulated laser chip array. The arrayed waveguide grating chip includes an optical waveguides that transfer multi-channel optical signals and a wavelength multiplexer that multiplexes the multi-channel optical signals. The directly modulated laser transmitter and the arrayed waveguide grating chip are spaced apart from each other and are optically coupled in chip-to-chip.
Abstract:
Provided is an optical module including an optical waveguide device through which multiple channel lightwaves are input and output, an optical transmission/reception unit disposed on one side of the optical waveguide device, an electronic IC disposed on one side of the optical transmission/reception unit and configured to drive the optical transmission/reception unit, a flexible printed circuit board (PCB) disposed on the optical transmission/reception unit and the electronic IC, a first solder ball between the optical transmission/reception unit and the flexible PCB and a second solder ball between the electronic IC and the flexible PCB.
Abstract:
Provided is an optical module. The optical module includes: an optical bench having a first trench of a first depth and a second trench of a second depth that is lower than the first depth; a lens in the first trench of the optical bench; at least one semiconductor chip in the second trench of the optical bench; and a flexible printed circuit board covering an upper surface of the optical bench except for the first and second trenches, wherein the optical bench is a metal optical bench or a silicon optical bench.