摘要:
Feedstocks for additive manufacturing are provided. The feedstock may include a matrix material, and one or more capsules disposed in the matrix material, wherein the one or more capsules are configured to be removable from a surface portion when the matrix material is solidified to form one or more cavities in the surface portion. Methods of depositing the feedstocks and objects formed from the feedstocks are also provided.
摘要:
Feedstocks for additive manufacturing are provided. The feedstock may include a matrix material, and one or more capsules disposed in the matrix material, wherein the one or more capsules are configured to be removable from a surface portion when the matrix material is solidified to form one or more cavities in the surface portion. Methods of depositing the feedstocks and objects formed from the feedstocks are also provided.
摘要:
A phase change system and methods of making a phase change system are disclosed. A multiple phase change system is also disclosed. The system may include at least one phase change material and at least one chemical reactant encapsulated within the phase change material. The chemical reactant may react with another chemical reactant or the surrounding environment.
摘要:
Feedstocks for additive manufacturing are provided. The feedstock may include a matrix material, and one or more capsules disposed in the matrix material, wherein the one or more capsules are configured to be removable from a surface portion when the matrix material is solidified to form one or more cavities in the surface portion. Methods of depositing the feedstocks and objects formed from the feedstocks are also provided.
摘要:
A matrix material dispersed with one or more susceptor structures can be formed into a feedstock for an additive manufacturing process. The one or more susceptor structures can be excited by an energy field such as an electric field, a magnetic field, an electromagnetic field, or any combination thereof, to produce heat. The heat that is produced can be transferred to the matrix material that surrounds the one or more susceptor structures to provide heat treatment to the matrix material. The heat treatment can improve the material and mechanical properties of three dimensional objects formed from the feedstock.
摘要:
Feedstocks for additive manufacturing are provided. The feedstock may include a matrix material, and one or more capsules disposed in the matrix material, wherein the one or more capsules are configured to be removable from a surface portion when the matrix material is solidified to form one or more cavities in the surface portion. Methods of depositing the feedstocks and objects formed from the feedstocks are also provided.
摘要:
A matrix material dispersed with one or more susceptor structures can be formed into a feedstock for an additive manufacturing process. The one or more susceptor structures can be excited by an energy field such as an electric field, a magnetic field, an electromagnetic field, or any combination thereof, to produce heat. The heat that is produced can be transferred to the matrix material that surrounds the one or more susceptor structures to provide heat treatment to the matrix material. The heat treatment can improve the material and mechanical properties of three dimensional objects formed from the feedstock.
摘要:
A feedstock for additive manufacturing includes a matrix material, and one or more barbed fibers disposed within the matrix material. Each barbed fiber includes a central filament and one or more barbed structures configured to extend outwardly from the central filament after extrusion. Methods of making the feedstock and methods of using the feedstock to form three-dimensional objects are also disclosed.
摘要:
Electrodes that include at least one active material layer, and at least one graphitized carbon structure layer are disclosed. The active material layer may include an active metal ion complex. The at least one active material layer may form an active material stack that includes a positive active material layer, a negative active material layer, and an electrolyte layer disposed between the positive active material layer and the negative active material layer. The electrode may be configured as an energy storage structure. The energy storage structure may include a first graphitized carbon structure layer, a second graphitized carbon structure layer, and an active material stack disposed between the first graphitized carbon structure layer and the second graphitized carbon structure layer. Methods of making energy storage structures are also disclosed.