摘要:
The disclosure describes the oligomerization of supercritical ethene. An essential aspect of the invention is that of mixing ethene with an inert medium and setting the conditions in the reaction such that both ethene and the inert medium are supercritical. This is because the solubility for ethene in the inert medium is greater in the supercritical state, such that more ethene is dissolved in the supercritical inert medium than in a liquid solvent. The process regime in the supercritical state therefore enables the use of a much higher proportion of ethene in a homogeneous mixture of ethene and inert medium than is possible on the basis of the thermodynamic solubility restriction in a purely liquid hydrocarbon stream. In this way, the space-time yield is distinctly enhanced. Since a greater amount of ethene can be passed into the reactor, it is possible as a result to better exploit the apparatus volume compared to a liquid phase process. The inert medium used may, for example, be isobutane.
摘要:
The invention relates to a process for preparing an ester mixture, in which an n-butene-containing feed mixture having a composition which changes over time is first oligomerized and then converted by hydroformylation, hydrogenation and esterification to an ester mixture. In this process, an approximation of the actual viscosity of the ester mixture is determined. The problem that it addresses is that of specifying a comparatively simple process which enables conversion of an n-butene with a variable composition over time to an ester mixture having a viscosity which can be kept very substantially constant over a long period even when an inconstant C4 source which delivers fluctuating qualities over this period is utilized. This is achieved through controlled use of a second raw material, namely ethene. It has been found that the viscosity of n-butene-based ester mixtures can be influenced by controlled use of ethene in the preparation of the ester precursors. Specifically, the invention proposes two measures by which the ethene can be used: either directly as C2 olefin or as C8 olefin after prior separate oligomerization.
摘要:
The invention relates to the in situ regeneration of heterogeneous oligomerization catalysts which are used in the liquid phase oligomerization of ethene.
摘要:
The invention is concerned with the oligomerization of supercritical ethene. An essential aspect of the invention is that of mixing ethene with an inert medium and setting the conditions in the reaction such that both ethene and inert medium are supercritical. This is because the solubility for ethene in the inert medium is greater in the supercritical state, such that more ethene is dissolved in the supercritical inert medium than in a liquid solvent. The process regime in the supercritical state therefore enables the use of a much higher proportion of ethene in a homogeneous mixture of ethene and inert medium than is possible on the basis of the thermodynamic solubility restriction in a purely liquid hydrocarbon stream. In this way, the space-time yield is distinctly enhanced. Since a greater amount of ethene can be passed into the reactor, it is possible as a result to better exploit the apparatus volume compared to a liquid phase process. The inert medium used may, for example, be isobutane.
摘要:
The invention is concerned with the production of 1-hexene and octenes from ethene. 1-Butene is optionally also to be produced. The problem addressed by the present invention is that of developing a process for producing 1-hexene from ethene by MTHxE etherification to achieve better chemical utilization of the employed carbon atoms. This problem is solved by catalytic retrocleavage of MTHxE into the C6 olefins and the alcohol, reuse of the alcohol in the etherification and reaction of the obtained C6 olefins with ethene to afford C8 olefins. In this way the alcohol is not lost from the process but rather is internally recirculated as a derivatizing agent. The less attractive C6 olefins from the cleavage product are upgraded to octene with further ethene in order to provide a further commercial product.
摘要:
The invention relates to a process for purifying hydrocarbon mixtures, in which a contaminated hydrocarbon mixture comprising olefins having three to eight carbon atoms is at least partly freed of sulphur-containing contaminants by contacting it with a solid sorbent, the hydrocarbon mixture being exclusively in the liquid state during the contact with the sorbent. The problem that it addressed was that of virtually completely removing sulphur compounds present in the mixture without forming new sulphur compounds again at the same time. At the same time, 1-butene present therein was not to be lost in the purification of the mixture. Finally, the sorbent used was to have a high sorption capacity, be very substantially free of carcinogenic constituents and be readily available. This problem is solved by using a sorbent based on copper oxide, zinc oxide and aluminium oxide in a particular composition, and by conducting the purification in the presence of a small amount of hydrogen.
摘要:
The invention relates to a method for cleaning hydrocarbon mixtures, in which a contaminated hydrocarbon mixture comprising hydrocarbons having three to eight carbon atoms is at least partly freed of impurities by contacting with a solid sorbent, wherein the hydrocarbon mixture is exclusively in the liquid state during contact with the sorbent. The object of the invention is to specify a process for cleaning liquid C3 to C8 hydrocarbon mixtures, which is based on a readily available but non-carcinogenic sorbent and which achieves better purities compared to traditional molecular sieves. This object is achieved by using, as sorbents, solid materials of the following composition: copper oxide: 10% to 60% by weight (calculated as CuO); zinc oxide: 10% to 60% by weight (calculated as ZnO); aluminum oxide: 10% to 30% by weight (calculated as Al2O3); other substances: 0% to 5% by weight. Materials of this kind are otherwise used as catalysts in methanol synthesis.
摘要:
The invention is concerned with the production of 1-hexene and octenes from ethene. 1-Butene is optionally also to be produced. The problem addressed by the present invention is that of developing a process for producing 1-hexene from ethene by MTHxE etherification to achieve better chemical utilization of the employed carbon atoms. This problem is solved by catalytic retrocleavage of MTHxE into the C6 olefins and the alcohol, reuse of the alcohol in the etherification and reaction of the obtained C6 olefins with ethene to afford C8 olefins. In this way the alcohol is not lost from the process but rather is internally recirculated as a derivatizing agent. The less attractive C6 olefins from the cleavage product are upgraded to octene with further ethene in order to provide a further commercial product.
摘要:
The invention relates to a method for cleaning hydrocarbon mixtures, in which a contaminated hydrocarbon mixture comprising hydrocarbons having three to eight carbon atoms is at least partly freed of impurities by contacting with a solid sorbent, wherein the hydrocarbon mixture is exclusively in the liquid state during contact with the sorbent. The object of the invention is to specify a process for cleaning liquid C3 to C8 hydrocarbon mixtures, which is based on a readily available but non-carcinogenic sorbent and which achieves better purities compared to traditional molecular sieves. This object is achieved by using, as sorbents, solid materials of the following composition: copper oxide: 10% to 60% by weight (calculated as CuO); zinc oxide: 10% to 60% by weight (calculated as ZnO); aluminum oxide: 10% to 30% by weight (calculated as Al2O3); other substances: 0% to 5% by weight. Materials of this kind are otherwise used as catalysts in methanol synthesis.
摘要:
A process for the combined preparation of a butene and an octene from ethene, proceeds by: a) providing a solvent having a boiling point or boiling range above the boiling points of the butenes and below the boiling points of the octenes and wherein the solvent is an inert solvent or is hexene alone or is hexene admixed with pentane or hexane or heptane or is a mixture of pentane, hexane, and heptane; b) providing a first feed mixture containing at least the solvent and ethene dissolved therein; c) providing a second feed mixture containing at least hexene, the solvent and also ethene dissolved in the solvent and/or in the hexene; d) transferring the first feed mixture into a first synthesis and the second feed mixture into a second synthesis, wherein the first and second syntheses are physically separated from one another; e) oligomerizing of at least part of the ethene present in the first feed mixture in the presence of a first heterogeneous catalyst and in the presence of the solvent in the first synthesis to give a first reaction mixture comprising at least the solvent, butene and hexene; f) separating a butene-containing low boiler fraction from the first reaction mixture or from a stream based on the first reaction mixture; g) separating an intermediate boiler fraction containing hexene and the solvent from the first reaction mixture or from a stream based on the first reaction mixture; h) using at least part of the intermediate boiler fraction in the course of providing the second feed mixture; and i) reacting at least part of the ethene present in the second feed mixture with at least part of the hexene present in the second feed mixture in the presence of a second heterogeneous catalyst and in the presence of the solvent in the second synthesis to give a second reaction mixture comprising at least octene and the solvent.