Abstract:
A porous formed body (Y) including a porous formed body (X) that satisfies the following (x-1) to (x-3), and an alkali metal carbonate or an alkali metal bicarbonate, in which a content of the alkali metal carbonate or the alkali metal bicarbonate is in a range of from 1 part by mass to 230 parts by mass, with respect to 100 parts by mass of the porous formed body (X), and a production method thereof, an α-olefin dimerization catalyst and a production method thereof, and a method of producing an α-olefin dimer:
requirement (x-1): a volume of pores with a pore diameter in a range of from 0.01 μm to 100 μm is from 0.10 mL/g to 1.00 mL/g; requirement (x-2): a median pore diameter of pores with a pore diameter in a range of from 0.01 μm to 100 μm is from more than 0.01 μm to 10.0 μm; and requirement (x-3): a crushing strength is from 0.7 kgf to 15.0 kgf.
Abstract:
The invention relates to a process for preparing an ester mixture, in which an n-butene-containing feed mixture having a composition which changes over time is first oligomerized and then converted by hydroformylation, hydrogenation and esterification to an ester mixture. In this process, an approximation of the actual viscosity of the ester mixture is determined. The problem that it addresses is that of specifying a comparatively simple process which enables conversion of an n-butene with a variable composition over time to an ester mixture having a viscosity which can be kept very substantially constant over a long period even when an inconstant C4 source which delivers fluctuating qualities over this period is utilized. This is achieved through controlled use of a second raw material, namely ethene. It has been found that the viscosity of n-butene-based ester mixtures can be influenced by controlled use of ethene in the preparation of the ester precursors. Specifically, the invention proposes two measures by which the ethene can be used: either directly as C2 olefin or as C8 olefin after prior separate oligomerization.
Abstract:
Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
Abstract:
Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
Abstract:
The invention relates to a process for preparing an ester mixture, in which an n-butene-containing feed mixture having a composition which changes over time is first oligomerized and then converted by hydroformylation, hydrogenation and esterification to an ester mixture. In this process, an approximation of the actual viscosity of the ester mixture is determined. The problem that it addresses is that of specifying a comparatively simple process which enables conversion of an n-butene with a variable composition over time to an ester mixture having a viscosity which can be kept very substantially constant over a long period even when an inconstant C4 source which delivers fluctuating qualities over this period is utilized. This is achieved through controlled use of a second raw material, namely ethene. It has been found that the viscosity of n-butene-based ester mixtures can be influenced by controlled use of ethene in the preparation of the ester precursors. Specifically, the invention proposes two measures by which the ethene can be used: either directly as C2 olefin or as C8 olefin after prior separate oligomerization.
Abstract:
The invention relates to the in situ regeneration of heterogeneous oligomerization catalysts which are used in the liquid phase oligomerization of ethene.
Abstract:
This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework. At least one Group 10 metal, such as platinum, is deposited on the zeolite. Examples of the elements in the framework are tin, boron, iron or titanium. The catalyst is prepared by synthesizing a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.
Abstract:
The process and apparatus converts ethylene in a dilute ethylene stream that may be derived from an FCC product to heavier hydrocarbons. The catalyst may be an amorphous silica-alumina base with a Group VIII and/or VIB metal. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, hydrogen and ammonia. At least 40 wt-% of the ethylene in the dilute ethylene stream can be converted to heavier hydrocarbons.
Abstract:
A process is disclosed for making higher olefins by oligomerization of a lower olefin e.g ethylene, to higher olefins, using catalytic distillation conditions. Simultaneously and interdependently, the lower olefin is catalytically oligomerized to higher olefins, and said higher olefins are separated and recovered as liquid.
Abstract:
The invention relates to a process for the oligomerization of butenes, in which a stream which contains predominantly butenes and has been obtained by separation from a stream of hydrocarbons having a lower content of butenes, scrubbing and drying is fed to the oligomerization.