摘要:
There are provided a method and an apparatus which form silicon dots having substantially uniform particle diameters and exhibiting a substantially uniform density distribution directly on a substrate at a low temperature. A hydrogen gas (or a hydrogen gas and a silane-containing gas) is supplied into a vacuum chamber (1) provided with a silicon sputter target (e.g., target 30), or the hydrogen gas and the silane-containing gas are supplied into the chamber (1) without arranging the silicon sputter target therein, a high-frequency power is applied to the gas(es) so that plasma is generated such that a ratio (Si(288 nm)/Hβ) between an emission intensity Si(288 nm) of silicon atoms at a wavelength of 288 nm and an emission intensity Hβ of hydrogen atoms at a wavelength of 484 nm in plasma emission is 10.0 or lower, and preferably 3.0 or lower, or 0.5 or lower, and silicon dots (SiD) having particle diameters of 20 nm or lower, or 10 nm or lower are formed directly on the substrate (S) at a low temperature of 500 deg. C. or lower in the plasma (and with chemical sputtering if a silicon sputter target is present).
摘要:
Plasma producing method and apparatus wherein a plurality of high-frequency antennas are arranged in a plasma producing chamber, and a high-frequency power supplied from a high-frequency power supply device (including a power source, a phase controller and the like) is applied to a gas in the chamber from the antennas to produce inductively coupled plasma. At least some of the plurality of high-frequency antennas are arranged in a fashion of such parallel arrangement that the antennas successively neighbor to each other and each of the antennas is opposed to the neighboring antenna. The high-frequency power supply device controls a phase of a high-frequency voltage applied to each antenna, and thereby controls an electron temperature of the inductively coupled plasma.
摘要:
A plasma generating method and apparatus which use plural high-frequency antennas 2 to generate inductively coupled plasma, and a plasma processing apparatus using the apparatus. The antennas 2 are identical to one another. Application of a high-frequency electric power to the antennas 2 is performed from a high-frequency power source 4 which is disposed commonly to the antennas 2, through one matching circuit 5 and one busbar 3. The busbar 3 is partitioned into sections the number of which is equal to that of the antennas, while setting a portion which is connected to the matching circuit 5, as a reference. One-end portions of the antennas are connected to corresponding sections 31, 32, 33 through power supplying lines 311, 321, 331. The other end portions of the antennas are grounded. The impedances of the sections of the busbar, and those of the power supplying lines are adjusted so that same currents flow through the antennas, and a same voltage is applied to the antennas. Therefore, the inductively coupled plasma is generated while uniformalizing high-frequency electric powers supplied to the antennas 2.
摘要:
A plasma generating method and apparatus which use plural high-frequency antennas 2 to generate inductively coupled plasma, and a plasma processing apparatus using the apparatus. The antennas 2 are identical to one another. Application of a high-frequency electric power to the antennas 2 is performed from a high-frequency power source 4 which is disposed commonly to the antennas 2, through one matching circuit 5 and one busbar 3. The busbar 3 is partitioned into sections the number of which is equal to that of the antennas, while setting a portion which is connected to the matching circuit 5, as a reference. One-end portions of the antennas are connected to corresponding sections 31, 32, 33 through power supplying lines 311, 321, 331. The other end portions of the antennas are grounded. The impedances of the sections of the busbar, and those of the power supplying lines are adjusted so that same currents flow through the antennas, and a same voltage is applied to the antennas. Therefore, the inductively coupled plasma is generated while uniformalizing high-frequency electric powers supplied to the antennas 2.
摘要:
Plasma producing method and apparatus wherein a plurality of high-frequency antennas are arranged in a plasma producing chamber, and a high-frequency power supplied from a high-frequency power supply device (including a power source, a phase controller and the like) is applied to a gas in the chamber from the antennas to produce inductively coupled plasma. At least some of the plurality of high-frequency antennas are arranged in a fashion of such parallel arrangement that the antennas successively neighbor to each other and each of the antennas is opposed to the neighboring antenna. The high-frequency power supply device controls a phase of a high-frequency voltage applied to each antenna, and thereby controls an electron temperature of the inductively coupled plasma.
摘要:
One or more high-frequency antennas is allocated to and disposed in one cubic space C having a side of 0.4 [m] in a plasma generating chamber 1 or in each of plural cubic spaces C, each having a side of 0.4 [m], adjacent ones of the plural cubic spaces being continuous to each other without forming a gap therebetween. The total length L [m] of the high-frequency antennas in each of the cubic spaces C is set in a range which satisfies relationships of (0.2/P)
摘要:
Plasma producing method and apparatus as well as plasma processing apparatus including the plasma producing apparatus wherein one or more high-frequency antennas are arranged in a plasma producing chamber, and a high-frequency power is applied to a gas in the chamber from the antenna(s) to produce inductively coupled plasma. Impedance of the high-frequency antenna is set in a range of 45 Ω or lower.
摘要:
Plasma producing method and apparatus as well as plasma processing apparatus utilizing the plasma producing apparatus wherein a plurality of high-frequency antennas are arranged in a plasma producing chamber, and a high-frequency power supplied from a high-frequency power supply device (including a power source, a matching box and the like) is applied to a gas in the chamber from the antennas to produce inductively coupled plasma. At least some of the plurality of high-frequency antennas are arranged in a fashion of such parallel arrangement that the antennas successively neighbor to each other and each of the antennas is opposed to the neighboring antenna. The high-frequency power supply device supplies the high-frequency power to each antenna from terminals of the antennas on the same side.
摘要:
The present invention aims at providing a radio-frequency antenna unit capable of generating a high-density discharge plasma in a vacuum chamber. The radio-frequency antenna unit according to the present invention includes: a radio-frequency antenna through which a radio-frequency electric current can flow; a protective tube made of an insulator provided around the portion of the radio-frequency antenna that is in the vacuum chamber; and a buffer area provided between the radio-frequency antenna and the protective tube. The “buffer area” refers to an area where an acceleration of electrons is suppressed, and it can be formed, for example, with a vacuum or an insulator. Such a configuration can suppress an occurrence of an electric discharge between the antenna and the protective tube, enabling the generation of a high-density discharge plasma in the vacuum chamber.
摘要:
A thin-film forming sputtering system capable of a sputtering process at a high rate. A thin-film forming sputtering system includes: a vacuum container; a target holder located inside the vacuum container; a target holder located inside the vacuum container; a substrate holder opposed to the target holder; a power source for applying a voltage between the target holder and the substrate holder; a magnetron-sputtering magnet provided behind the target holder, for generating a magnetic field having a component parallel to a target; and radio-frequency antennae for generating radio-frequency inductively-coupled plasma within a space in the vicinity of the target where the magnetic field generated by the magnetron-sputtering magnet has a strength equal to or higher than a predetermined level. The radio-frequency inductively-coupled plasma generated by the radio-frequency antennae promotes the supply of electrons into the aforementioned magnetic field, so that the sputtering process can be performed at a high rate.