摘要:
Provided are a method and a kit for accurately and rapidly detecting ten types of targeting pneumonia bacteria: Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis, methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus aureus. A set of primer pairs directed to their respective target regions contained in the DnaJ gene, etc., of the ten types of pneumonia causative bacteria is designed for the ten bacterial strains and used to amplify gene products. A set of bacterial strain-specific probe pairs is further designed for the ten bacterial strains such that the probe pairs hybridize with the amplification products via sequences in the respective target regions differing from the sequences hybridized by the set of primer pairs. A first probe-bound labeled high molecular carrier in which plural types of first probes for the pneumonia bacteria are bound to a labeled high molecular carrier and a solid-phase second probe-carrying developing support are used as the set of probe pairs to perform nucleic acid chromatography.
摘要:
A silicon object formation target substrate is arranged in a first chamber, a silicon sputter target is arranged in a second chamber communicated with the first chamber, plasma for chemical sputtering is formed from a hydrogen gas in the second chamber, chemical sputtering is effected on the silicon sputter target with the plasma thus formed, producing particles contributing to formation of silicon object, whereby a silicon object is formed, on the substrate, from the particles moved from the second chamber to the first chamber.
摘要:
A substrate having silicon dots wherein at least one insulating layer and at least one group of silicon dots are formed on a substrate selected from a non-alkali glass substrate and a substrate made of a polymer material.
摘要:
A substrate is accommodated in a vacuum chamber provided with a silicon sputter target, a sputtering gas (typically a hydrogen gas) is supplied into the vacuum chamber, a high-frequency power is applied to the gas to form plasma in the chamber, a bias voltage is applied to the target for control of chemical sputtering, and the chemical sputtering is effected on the target by the plasma to form silicon dots on the substrate.
摘要:
There are provided a method and an apparatus which form silicon dots having substantially uniform particle diameters and exhibiting a substantially uniform density distribution directly on a substrate at a low temperature. A hydrogen gas (or a hydrogen gas and a silane-containing gas) is supplied into a vacuum chamber (1) provided with a silicon sputter target (e.g., target 30), or the hydrogen gas and the silane-containing gas are supplied into the chamber (1) without arranging the silicon sputter target therein, a high-frequency power is applied to the gas(es) so that plasma is generated such that a ratio (Si(288 nm)/Hβ) between an emission intensity Si(288 nm) of silicon atoms at a wavelength of 288 nm and an emission intensity Hβ of hydrogen atoms at a wavelength of 484 nm in plasma emission is 10.0 or lower, and preferably 3.0 or lower, or 0.5 or lower, and silicon dots (SiD) having particle diameters of 20 nm or lower, or 10 nm or lower are formed directly on the substrate (S) at a low temperature of 500 deg. C. or lower in the plasma (and with chemical sputtering if a silicon sputter target is present).
摘要:
When a read-ahead vehicle speed is calculated using an integrator and a delay element, a predetermined gain used for an integral calculation is made small if a result of the integral calculation greater than a predetermined value based on an actual vehicle speed.
摘要:
A silicon object formation target substrate is arranged in a first chamber, a silicon sputter target is arranged in a second chamber communicated with the first chamber, plasma for chemical sputtering is formed from a hydrogen gas in the second chamber, chemical sputtering is effected on the silicon sputter target with the plasma thus formed, producing particles contributing to formation of silicon object, whereby a silicon object is formed, on the substrate, from the particles moved from the second chamber to the first chamber.
摘要:
A method of forming a highly insulative silicon oxide thin film including the steps of providing a substrate, depositing silicon on the substrate, and injecting an ion beam of oxygen or a mixed gas consisting of oxygen and an inert gas simultaneously or alternately with the depositing of the silicon. Silicon oxide may be deposited on the substrate in combination with the injection of ions of an inert gas. Other metals made be deposited along with the injection of oxygen or nitrogen cations.
摘要:
When an accelerator pedal opening angle is large, a target vehicle speed is calculated using a read-ahead vehicle speed and, when the accelerator pedal opening angle is small, the target gear shift ratio is calculated using an actual vehicle speed.
摘要:
There are provided a method and an apparatus which form silicon dots having substantially uniform particle diameters and exhibiting a substantially uniform density distribution directly on a substrate at a low temperature. A hydrogen gas (or a hydrogen gas and a silane-containing gas) is supplied into a vacuum chamber (1) provided with a silicon sputter target (e.g., target 30), or the hydrogen gas and the silane-containing gas are supplied into the chamber (1) without arranging the silicon sputter target therein, a high-frequency power is applied to the gas(es) so that plasma is generated such that a ratio (Si(288 nm)/Hβ) between an emission intensity Si(288 nm) of silicon atoms at a wavelength of 288 nm and an emission intensity Hβ of hydrogen atoms at a wavelength of 484 nm in plasma emission is 10.0 or lower, and preferably 3.0 or lower, or 0.5 or lower, and silicon dots (SiD) having particle diameters of 20 nm or lower, or 10 nm or lower are formed directly on the substrate (S) at a low temperature of 500 deg. C. or lower in the plasma (and with chemical sputtering if a silicon sputter target is present).