摘要:
Provided is a gas barrier pressure-sensitive adhesive sheet having at least one gas barrier layer and at least one pressure-sensitive adhesive layer, the at least one pressure-sensitive adhesive layer having a storage modulus at 23° C. of 1.5×104 to 1.0×107 Pa, and the gas barrier pressure-sensitive adhesive sheet not including a base layer. Also, provided is the following: a gas barrier pressure-sensitive adhesive sheet that makes it possible to easily provide the adherend with a gas barrier capability without significantly increasing the thickness of the gas barrier pressure-sensitive adhesive sheet, does not show delamination (separation) at the interface between the pressure-sensitive adhesive layer and another layer even when subjected to high-temperature/high-humidity conditions, and exhibits excellent bendability, a method for producing the same, an electronic member that includes the gas barrier pressure-sensitive adhesive sheet, and an optical member that includes the gas barrier pressure-sensitive adhesive sheet.
摘要:
The present invention is a gas barrier pressure-sensitive adhesive sheet comprising at least one gas barrier layer and at least one pressure-sensitive adhesive layer, the at least one pressure-sensitive adhesive layer having a storage modulus at 23° C. of 1.5×104 to 1.0×107 Pa, and the gas barrier pressure-sensitive adhesive sheet not including a base layer. The present invention provides: a gas barrier pressure-sensitive adhesive sheet that makes it possible to easily provide the adherend with a gas barrier capability without significantly increasing the thickness of the gas barrier pressure-sensitive adhesive sheet, does not show delamination (separation) at the interface between the pressure-sensitive adhesive layer and another layer even when subjected to high-temperature/high-humidity conditions, and exhibits excellent bendability, a method for producing the same, an electronic member that includes the gas barrier pressure-sensitive adhesive sheet, and an optical member that includes the gas barrier pressure-sensitive adhesive sheet.
摘要:
The invention relates to a gas barrier film laminate comprising at least two gas barrier films and a pressure-sensitive adhesive layer, the at least two gas barrier films being stacked through the pressure-sensitive adhesive layer, at least one of the at least two gas barrier films including a base formed of a plastic film, and at least one gas barrier layer provided on the base, and the pressure-sensitive adhesive layer being a layer formed using a rubber-based pressure-sensitive adhesive composition that includes a rubber-based compound. The invention also relates to an electronic member comprising the gas barrier film laminate. The gas barrier film laminate exhibits a high water vapor barrier capability, and does not show interfacial lifting at the end thereof.
摘要:
The invention relates to a gas barrier film laminate comprising at least two gas barrier films and a pressure-sensitive adhesive layer, the at least two gas barrier films being stacked through the pressure-sensitive adhesive layer, at least one of the at least two gas barrier films including a base formed of a plastic film, and at least one gas barrier layer provided on the base, and the pressure-sensitive adhesive layer being a layer formed using a rubber-based pressure-sensitive adhesive composition that includes a rubber-based compound. The invention also relates to an electronic member comprising the gas barrier film laminate. The gas barrier film laminate exhibits a high water vapor barrier capability, and does not show interfacial lifting at the end thereof.
摘要:
A transparent conductive film which exhibits excellent gas barrier performance and electrical conductivity, and exhibits low sheet resistivity and high electrical conductivity, even after having been placed in moist and high-temperature conditions. The conductive film is in the form of a zinc oxide-based electrically conductive stacked structure, and the film includes a substrate and, formed on at least one surface of the substrate, (A) a gas barrier layer and (B) a transparent conductive layer formed of a zinc oxide-based conductive material, wherein the gas barrier layer is formed of a material containing at least oxygen atoms, carbon atoms, and silicon atoms, and includes a region in which the oxygen atom concentration gradually decreases and the carbon atom concentration gradually increases from the surface in the depth direction of the layer.
摘要:
The present invention provides a transparent conductive film including a base layer, a gas barrier layer, and a transparent conductive layer, the gas barrier layer being formed of a material that includes at least oxygen atoms, carbon atoms, and silicon atoms, the gas barrier layer including an area (A) in which an oxygen atom content rate gradually decreases, and a carbon atom content rate gradually increases from a surface in a depth direction, the area (A) including a partial area (A1) and a partial area (A2), the partial area (A1) having an oxygen atom content rate of 20 to 55%, a carbon atom content rate of 25 to 70%, and a silicon atom content rate of 5 to 20%, based on a total content rate of oxygen atoms, carbon atoms, and silicon atoms, and the partial area (A2) having an oxygen atom content rate of 1 to 15%, a carbon atom content rate of 72 to 87%, and a silicon atom content rate of 7 to 18%, based on a total content rate of oxygen atoms, carbon atoms, and silicon atoms.
摘要:
A zinc-oxide-based conductive stacked structure 1 includes a substrate 11 and, formed on at least one surface of the substrate, an undercoat layer 12 and a transparent conductive film 13. The transparent conductive film is formed of a plurality of transparent conductive layers formed from a zinc-oxide-based conductive material and has a carrier density of 2.0×1020 to 9.8×1020 cm−3. The zinc-oxide-based conductive stacked structure exhibits a change ratio in sheet resistivity of 50 or less, after bending of the stacked structure around a round bar having a diameter of 15 mm, with the transparent conductive film facing inward.
摘要:
Disclosed is a transparent conductive film, including a substrate and, formed on at least one surface of the substrate, a gas barrier layer and a transparent conductive layer, wherein the gas barrier layer is formed of a material containing at least oxygen atoms, nitrogen atoms, and silicon atoms, and includes a surface layer part which has an oxygen atom fraction of 60 to 75%, a nitrogen atom fraction of 0 to 10%, and a silicon atom fraction of 25 to 35%, each atom fraction being calculated with respect to the total number of the oxygen atoms, nitrogen atoms, and silicon atoms contained in the surface layer part and which has a film density of 2.4 to 4.0 g/cm3.
摘要翻译:公开了一种透明导电膜,包括基板,并形成在基板的至少一个表面上,具有阻气层和透明导电层,其中阻气层由至少含有氧原子,氮原子 和硅原子,并且包括氧原子分数为60〜75%,氮原子分数为0〜10%,硅原子分数为25〜35%的表层部,各原子分数为 相对于表层部分中含有的氧原子,氮原子和硅原子的总数,其膜密度为2.4〜4.0g / cm 3。
摘要:
A zinc-oxide-based conductive stacked structure 1 includes a substrate 11 and, formed on at least one surface of the substrate, an undercoat layer 12 and a transparent conductive film 13. The transparent conductive film is formed of a plurality of transparent conductive layers formed from a zinc-oxide-based conductive material and has a carrier density of 2.0×1020 to 9.8×1020 cm−3. The zinc-oxide-based conductive stacked structure exhibits a change ratio in sheet resistivity of 50 or less, after bending of the stacked structure around a round bar having a diameter of 15 mm, with the transparent conductive film facing inward.
摘要:
The present invention provides: a transparent conductive film comprising a base layer, a gas barrier layer, and a transparent conductive layer, the gas barrier layer being formed of a material that includes silicon atoms, oxygen atoms, and carbon atoms, a silicon atom content rate, an oxygen atom content rate, and a carbon atom content rate in a surface layer part of the gas barrier layer determined by XPS elemental analysis being 18.0 to 28.0%, 48.0 to 66.0%, and 10.0 to 28.0%, respectively, based on a total content rate (=100 atom %) of silicon atoms, oxygen atoms, and carbon atoms, and the transparent conductive film having a water vapor transmission rate at a temperature of 40° C. and a relative humidity of 90% of 6.0 g/m2/day or less, and a visible light transmittance at a wavelength of 550 nm of 90% or more; and others. According to the present invention, it becomes possible to provide a transparent conductive film that exhibits an excellent gas barrier capability and excellent transparency, and has low sheet resistance (i.e., exhibits excellent conductivity) even under a high-temperature/high-humidity environment, and others.