摘要:
A technique for forming at least part of an array of a dual bit memory core is disclosed. Initially, a portion of a charge trapping dielectric layer is formed over a substrate and a resist is formed over the portion of the charge trapping dielectric layer. The resist is patterned and a pocket implant is performed at an angle to establish pocket implants within the substrate. A bitline implant is then performed to establish buried bitlines within the substrate. The patterned resist is then removed and the remainder of the charge trapping dielectric layer is formed. A wordline material is formed over the remainder of the charge trapping dielectric layer and patterned to form wordlines that overlie the bitlines. The pocket implants serve to mitigate, among other things, complementary bit disturb (CBD) that can result from semiconductor scaling. As such, semiconductor devices can be made smaller and increased packing densities can be achieved by virtue of the inventive concepts set forth herein.
摘要:
A technique for forming at least part of an array of a dual bit memory core is disclosed. Initially, a portion of a charge trapping dielectric layer is formed over a substrate and a resist is formed over the portion of the charge trapping dielectric layer. The resist is patterned and a pocket implant is performed at an angle to establish pocket implants within the substrate. A bitline implant is then performed to establish buried bitlines within the substrate. The patterned resist is then removed and the remainder of the charge trapping dielectric layer is formed. A wordline material is formed over the remainder of the charge trapping dielectric layer and patterned to form wordlines that overlie the bitlines. The pocket implants serve to mitigate, among other things, complementary bit disturb (CBD) that can result from semiconductor scaling. As such, semiconductor devices can be made smaller and increased packing densities can be achieved by virtue of the inventive concepts set forth herein.
摘要:
The present invention pertains to implementing a lightly doped channel (LDC) implant in fashioning a memory device to improve Vt roll-off, among other things. The lightly doped channel helps to preserve channel integrity such that a threshold voltage (Vt) can be maintained at a relatively stable level and thereby mitigate Vt roll-off. The LDC also facilitates a reduction in buried bitline width and thus allows the bitlines to be brought closer together. As a result more devices can be formed or “packed” within the same or a smaller area.
摘要:
Methods are provided for significantly reducing electron trapping in semiconductor devices having a floating gate and an overlying dielectric layer. The methods form a nitrogen-rich region within the floating gate near the interface to an overlying dielectric layer. The methods include selectively introducing nitrogen into the floating gate prior to forming the overlying dielectric layer. This forms an initial nitrogen concentration profile within the floating gate. An initial portion of the overlying dielectric layer is then formed of a high temperature oxide (HTO). The temperature within the floating gate is purposely raised to an adequately high temperature to cause the initial nitrogen concentration profile to change due to the migration of the majority of the nitrogen towards the interface with the overlying dielectric layer and an interface with an underlying layer. Consequently, the floating gate is left with a first nitrogen-rich region near the interface to the overlying dielectric layer and a second nitrogen-rich region near the interface to the underlying layer. The first nitrogen-rich region has been found to reduce electron trapping within the floating gate, which could lead to false programming of the floating gate. Unlike a conventional thermally grown oxide film, the high temperature oxide film within the interpoly dielectric layer advantageously prevents the surface of the floating gate from becoming too granular. As such, the resulting interpoly dielectric layer, which typically includes several films, can be formed more evenly.
摘要:
One aspect of the present invention relates to a method of making a flash memory cell, involving the steps of providing a substrate having a flash memory cell thereon; forming a self-aligned source mask over the substrate, the self aligned source mask having openings corresponding to source lines; implanting a source dopant of a first type in the substrate through the openings in the self-aligned source mask corresponding to source lines; removing the self-aligned source mask from the substrate; forming a MDD mask over the substrate, the MDD mask covering the source lines and having openings corresponding to drain lines; and implanting a medium dosage drain implant of a second type to form a drain region in the substrate adjacent the flash memory cell.
摘要:
Methods of operating dual bit memory devices including programming with a range of values are provided. The present invention employs a range of ramp source program pulses to iteratively perform a program operation that employs hot hole injection. The range is related to channel lengths of individual dual bit memory cells within the memory device. To program a bit of a particular dual bit memory cell, a negative gate program voltage is applied to its gate, a positive drain voltage is applied to its acting drain, and its substrate is connected to ground. Additionally, a ramp source voltage of the range of ramp source program pulses is concurrently applied to an acting source of the dual bit memory cell. A verification operation is then performed and the programming is repeated with a decremented ramp source voltage on verification failure.
摘要:
A method of repairing a memory device is provided. If an erase process is unsuccessful, a repair process is performed. A programmed state of the memory device is determined, A subsequent erase process dependent on the programmed state is performed. Also, a method of programming and erasing a memory device is provided. The memory device includes first and second electrodes and a switching layer therebetween. A first on-state resistance characteristic of the memory device is provided in programming the memory device by application of a first voltage to the gate of a transistor in series with the memory device. Other on-state resistance characteristics of the memory device, different from the first on-state resistance characteristic, may be provided by application of other voltages, different from the first voltage, to the gate of the transistor.
摘要:
A present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening, providing a switching body in the opening, the first conductive body and switching body filling the opening, and providing a second conductive body over the switching body. In an alternate embodiment, a second dielectric layer is provided over the first-mentioned dielectric layer, and the switching body is provided in an opening in the second dielectric layer.
摘要:
In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
摘要:
The present memory device include first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the first and second electrodes and into which ions from the passive layer may be provided, and from which the ions may be provided into the passive layer. The active layer is made up of a base material and an impurity therein. The combined the material and impurity have a lower diffusion coefficient than the base material alone.