摘要:
A method of bonding lattice-mismatched semiconductors is provided. The method includes forming a Ge-based virtual substrate and depositing on the virtual substrate a CMP layer that forms a planarized virtual substrate. Also, the method includes bonding a Si substrate to the planarized virtual substrate and performing layer exfoliation on selective layers of the planarized virtual substrate producing a damaged layer of Ge. Furthermore, the method includes removing the damaged layer of Ge.
摘要:
In various embodiments, an array of discrete solar cells with associated devices such as bypass diodes is formed over a single substrate. In one instance, a method of forming a solar-cell array with integrated bypass diodes comprising: providing a semiconductor substrate, a first cell comprising a SiGe p-n junction or SiGe p-i-n junction, one or more second cells each comprising a III-V semiconductor p-n junction or III-V semiconductor p-i-n junction; forming a bypass diode that is discrete and laterally separate from its associated solar cell and comprises an unremoved portion of the first cell, the formation comprising removing an unremoved portion of the one or more second cells thereover.
摘要:
The invention provides semiconductor structure comprising a strained Ge channel layer, and a gate dielectric disposed over the strained Ge channel layer. In one aspect of the invention, a strained Ge channel MOSFET is provided. The strained Ge channel MOSFET includes a relaxed SiGe virtual substrate with a Ge content between 50-95%, and a strained Ge channel formed on the virtual substrate. A gate structure is formed upon the strained Ge channel, whereupon a MOSFET is formed with increased performance over bulk Si. In another embodiment of the invention, a semiconductor structure comprising a relaxed Ge channel layer and a virtual substrate, wherein the relaxed Ge channel layer is disposed above the virtual substrate. In a further aspect of the invention, a relaxed Ge channel MOSFET is provided. The method includes providing a relaxed virtual substrate with a Ge composition of approximately 100% and a relaxed Ge channel formed on the virtual substrate.
摘要:
In various embodiments, solar cells include a junction including SiGe, a junction including at least one III-V material, and may be formed on silicon substrates and/or with silicon-based capping layers thereover.
摘要:
A method for minimizing particle generation during deposition of a graded Si.sub.1-xGe.sub.x layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si.sub.1-xGe.sub.x layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm.sup.2 on the substrate.
摘要翻译:在半导体材料上沉积梯度Si 1-x Ge x层的过程中使颗粒产生最小化的方法包括在包括Si前体和Ge前体的气氛中提供衬底,其中Ge前体具有分解 温度大于锗烷,并沉积具有大于约0.15的最终Ge含量并且小于约0.3颗粒/ cm 2的颗粒密度的梯度Si 1-x Ge 2层在衬底上 。
摘要:
Semiconductor structures and devices including strained material layers having impurity-free zones, and methods for fabricating same. Certain regions of the strained material layers are kept free of impurities that can interdiffuse from adjacent portions of the semiconductor. When impurities are present in certain regions of the strained material layers, there is degradation in device performance. By employing semiconductor structures and devices (e.g., field effect transistors or “FETs”) that have the features described, or are fabricated in accordance with the steps described, device operation is enhanced.
摘要:
Solar cells include a substrate consisting essentially of silicon, a first junction disposed over the substrate, the first junction comprising at least one III-V material and having a threading dislocation density of less than approximately 107 cm−2, and a cap layer disposed over the first junction, the cap layer comprising silicon.
摘要:
Methods and structures for monolithically integrating monocrystalline silicon and monocrystalline non-silicon materials and devices are provided. In one structure, a monolithically integrated semiconductor device structure comprises a silicon substrate and a first monocrystalline semiconductor layer disposed over the silicon substrate, wherein the first monocrystalline semiconductor layer has a lattice constant different from a lattice constant of relaxed silicon. The structure further includes an insulating layer disposed over the first monocrystalline semiconductor layer in a first region and a monocrystalline silicon layer disposed over the insulating layer in the first region. The structure includes at least one silicon-based photodetector comprising an active region including at least a portion of the monocrystalline silicon layer. The structure also includes a second monocrystalline semiconductor layer disposed over at least a portion of the first monocrystalline semiconductor layer in a second region and absent from the first region, wherein the second monocrystalline semiconductor layer has a lattice constant different from the lattice constant of relaxed silicon. The structure includes at least one non-silicon photodetector comprising an active region including at least a portion of the second monocrystalline semiconductor layer.
摘要:
Methods and structures for monolithically integrating monocrystalline silicon and monocrystalline non-silicon materials and devices are provided. In one structure, a monolithically integrated semiconductor device structure comprises a silicon substrate and a first monocrystalline semiconductor layer disposed over the silicon substrate, wherein the first monocrystalline semiconductor layer has a lattice constant different from a lattice constant of relaxed silicon. The structure further includes an insulating layer disposed over the first monocrystalline semiconductor layer in a first region and a monocrystalline silicon layer disposed over the insulating layer in the first region. The structure includes at least one silicon-based electronic device including an element including at least a portion of the monocrystalline silicon layer. The structure also includes a second monocrystalline semiconductor layer disposed over at least a portion of the first monocrystalline semiconductor layer in a second region and absent from the first region, wherein the second monocrystalline semiconductor layer has a lattice constant different from the lattice constant of relaxed silicon. The structure includes at least one III-V light-emitting device including an active region including at least a portion of the second monocrystalline semiconductor layer.