Abstract:
Disclosed are a catalyst comprising (A) an aluminosilicate molecular sieve comprising a ferrierite phase and (B) a hydrogenation metal component, and a hydroalkylation process using the catalyst. The catalyst and the hydroalkylation process can be used in the production of phenol and/or cyclohexanone from benzene hydroalkylation.
Abstract:
Disclosed is a hydroalkylation process in which the hydroalkylation catalyst is activated in the presence of a flowing fluid comprising hydrogen and a condensable agent. The presence of the condensable agent enables fast, effective activation of the hydroalkylation catalyst precursor in a cost-effective manner. It also yields superior catalyst performance.
Abstract:
A process for producing an alkylated aromatic compound comprises contacting an aromatic starting material and hydrogen with a plurality of catalyst particles under hydroalkylation conditions to produce an effluent comprising the alkylated aromatic compound, the catalyst comprising a composite of a solid acid, an inorganic oxide different from the solid acid and a hydrogenation metal, wherein the distribution of the hydrogenation metal in at least 60 wt % of the catalyst particles is such that the average concentration of the hydrogenation metal in the rim portion of a given catalyst particle is Crim, the average concentration of the hydrogenation metal in the center portion of the given catalyst particle is Ccenter, where 0.2≦Crim/Ccenter
Abstract:
Disclosed are a catalyst comprising (A) an aluminosilicate molecular sieve comprising a ferrierite phase and (B) a hydrogenation metal component, and a hydroalkylation process using the catalyst. The catalyst and the hydroalkylation process can be used in the production of phenol and/or cyclohexanone from benzene hydroalkylation.
Abstract:
A process for activating a hydroalkylation catalyst in a first state comprising an acid component and a hydrogenating metal component, including: (i) treatment at a temperature of at least 120° C. in the presence of hydrogen for a first duration to produce a catalyst in a second state having a first hydroalkylation activity; (ii) contacting the catalyst in the second state with an aromatic compound and hydrogen under a hydroalkylation condition effective to convert at least part of the aromatic compound to a cycloalkylaromatic compound and produce a catalyst in a third state; and (iii) treating the catalyst in the third state at a temperature of at least 160° C. in the presence of hydrogen but advantageously in the substantial absence of the aromatic compound for a third duration to produce an activated catalyst in a fourth state having a third hydroalkylation activity greater than the first hydroalkylation activity.
Abstract:
In a process for activating a hydroalkylation catalyst, a catalyst precursor comprising a solid acid component and a compound of a hydrogenation metal is heated at a heating rate of less than 50° C./hour in the presence of hydrogen to an activation temperature in a range from 100° C. to 260° C. and then the heated catalyst precursor is treated with hydrogen for a duration effective to reduce at least a portion of the metal compound to an elemental form.
Abstract:
Disclosed is a hydroalkylation process in which the hydroalkylation catalyst is activated in the presence of a flowing fluid comprising hydrogen and a condensable agent. The presence of the condensable agent enables fast, effective activation of the hydroalkylation catalyst precursor in a cost-effective manner. It also yields superior catalyst performance.
Abstract:
A process for producing an alkylated aromatic compound comprises contacting an aromatic starting material and hydrogen with a plurality of catalyst particles under hydroalkylation conditions to produce an effluent comprising the alkylated aromatic compound, the catalyst comprising a composite of a solid acid, an inorganic oxide different from the solid acid and a hydrogenation metal, wherein the distribution of the hydrogenation metal in at least 60 wt % of the catalyst particles is such that the average concentration of the hydrogenation metal in the rim portion of a given catalyst particle is Crim, the average concentration of the hydrogenation metal in the outer portion of a given catalyst particle is Couter, the average concentration of the hydrogenation metal in the center portion of the given catalyst particle is Ccenter, where Crim/Ccenter≧2.0 and/or Couter/Ccenter2.0. Also disclosed are rimmed catalyst and process for making phenol and/or cyclohexanone using the catalyst.
Abstract:
A process for producing an alkylated aromatic compound comprises contacting an aromatic starting material and hydrogen with a plurality of catalyst particles under hydroalkylation conditions to produce an effluent comprising the alkylated aromatic compound, the catalyst comprising a composite of a solid acid, an inorganic oxide different from the solid acid and a hydrogenation metal, wherein the distribution of the hydrogenation metal in at least 60 wt % of the catalyst particles is such that the average concentration of the hydrogenation metal in the rim portion of a given catalyst particle is Crim, the average concentration of the hydrogenation metal in the center portion of the given catalyst particle is Ccenter, where 0.2≦Crim/Ccenter
Abstract:
A process for producing an alkylated aromatic compound comprises contacting an aromatic starting material and hydrogen with a plurality of catalyst particles under hydroalkylation conditions to produce an effluent comprising the alkylated aromatic compound, the catalyst comprising a composite of a solid acid, an inorganic oxide different from the solid acid and a hydrogenation metal, wherein the distribution of the hydrogenation metal in at least 60 wt % of the catalyst particles is such that the average concentration of the hydrogenation metal in the rim portion of a given catalyst particle is Crim, the average concentration of the hydrogenation metal in the outer portion of a given catalyst particle is Couter, the average concentration of the hydrogenation metal in the center portion of the given catalyst particle is Ccenter, where Crim/Ccenter≧2.0 and/or Couter/Ccenter2.0. Also disclosed are rimmed catalyst and process for making phenol and/or cyclohexanone using the catalyst.