Abstract:
A method for forming an olefin, the method including: introducing a hydrocarbon feed stream into a reactor including a dehydrogenation catalyst; reacting the hydrocarbon feed stream with a dehydrogenation catalyst in the reactor to form a high temperature dehydrogenated product, the high temperature dehydrogenated product including at least a portion of the dehydrogenation catalyst; separating at least a portion of the dehydrogenation catalyst from the high temperature dehydrogenated product in a primary separation device and a secondary separation device downstream of and in fluid communication with the primary separation device; following the exit of high temperature dehydrogenation product from the secondary separation device, combining the high temperature dehydrogenation product with a quench stream to cool the high temperature dehydrogenation product and form an intermediate temperature dehydrogenation product, wherein the quench stream includes a hydrocarbon; and cooling the intermediate temperature dehydrogenation product to form a cooled dehydrogenation product.
Abstract:
In a process for separating a mixture comprising cyclohexanone and phenol, a solid-phase basic material, such as basic ion-exchange resin, is used to remove acid and/or sulfur from the mixture prior to separation. The process results in reduced amount of contamination such as cyclic ethers in the cyclohexanone and/or phenol products.
Abstract:
In a process for producing a mixture of cyclohexanone and cyclohexanol, a feed comprising cyclohexanone is contacted with hydrogen in the presence of a hydrogenation catalyst under hydrogenation conditions effective to convert part of the cyclohexanone in the feed into cyclohexanol and thereby produce a hydrogenation product containing cyclohexanone and cyclohexanol. A mixture of cyclohexanone and cyclohexanol is then obtained from the hydrogenation product.
Abstract:
In a process for separating a mixture comprising cyclohexanone and phenol, at least a portion of the mixture is distilled in the presence of a solvent including at least two alcoholic hydroxyl groups attached to non-adjacent saturated carbon atoms, water, and in the presence or absence of a hemiketal defined by the formula (I) or the formula (II): wherein R1, the same or different at each occurrence, is independently an alkylene group having from 2 to 10 carbon atoms, R2 is an alkylene group having from 4 to 10 carbon atoms and/or R3 is hydrogen or the following group: and in the presence or absence of an enol-ether derived from the hemiketal defined by the formula (I) or the formula (II), wherein the total concentration of the hemiketal and enol-ether, expressed in term of weight percentage of the total weight of the feed to the distilling step, is at most 0.01%.
Abstract:
The present invention relates to hydrogenation processes including: contacting a first composition with hydrogen under hydrogenation conditions, in the presence of an eggshell hydrogenation catalyst, wherein the first composition has: (i) greater than about 50 wt % of cyclohexylbenzene, the wt % based upon the total weight of the first composition; and (ii) greater than about 0.3 wt % of cyclohexenylbenzene, the wt % based upon the total weight of the first composition; and thereby obtaining a second composition having less cyclohexenylbenzene than the first composition. Other hydrogenation processes are also described.
Abstract:
In a process for producing 3,4′ and/or 4,4′ dimethyl-substituted biphenyl compounds, a feed comprising toluene is contacted with hydrogen in the presence of a hydroalkylation catalyst under conditions effective to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluenes. At least part of the hydroalkylation reaction product is dehydrogenated in the presence of a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising a mixture of dimethyl-substituted biphenyl isomers. The dehydrogenation reaction product is then separated into at least a first stream containing at least 50% of 3,4′ and 4,4′ dimethylbiphenyl isomers by weight of the first stream and at least one second stream comprising one or more 2,x′ (where x′ is 2′, 3′, or 4′) and 3,3′ dimethylbiphenyl isomers.
Abstract:
In a process for producing cyclohexylbenzene, hydrogen and benzene are introduced to a first hydroalkylation reaction zone which contains a hydroalkylation catalyst and which is operated under at least partly liquid phase conditions sufficient to effect hydroalkylation of benzene to produce a mixed liquid/vapor phase effluent comprising cyclohexylbenzene and unreacted benzene, wherein at least a portion of the unreacted benzene is in the vapor phase. At least a portion of the effluent is cooled to condense a liquid phase stream containing at least some of the cyclohexylbenzene in the effluent portion and leave a residual stream containing at least some of the unreacted benzene and cyclohexylbenzene. At least a portion of the liquid stream is recycled to the first hydroalkylation reaction zone or to contact the mixed phase effluent exiting the first hydroalkylation reaction zone. Other methods of cooling the reaction effluent are disclosed.
Abstract:
A hydrocarbon can be contacted with dehydrogenation catalyst particles to produce an effluent that can include coked catalyst particles and dehydrogenated hydrocarbon(s). A first stream rich in coked catalyst particles and a second stream rich in dehydrogenated hydrocarbon(s) and containing entrained catalyst particles can be separated from the effluent. The second stream can be contacted with a first quench medium to produce a cooled stream. The cooled stream can be contacted with a second quench medium within a quench tower. A gaseous stream that includes the dehydrogenated hydrocarbon(s), a first quench medium stream, and a slurry stream that includes the second quench medium and the entrained catalyst particles can be separated from the tower. The first quench medium can be recycled. The entrained catalyst particles can be separated from the slurry to provide recovered second quench medium and recovered entrained catalyst particles. The recovered second quench medium can be recycled.
Abstract:
Disclosed are processes for making cyclohexanone from a mixture comprising phenol, cyclohexanone, cyclohexylbenzene, and an S-containing component, comprising a step of removing at least a portion of the S-containing component to reduce poisoning of a hydrogenation catalyst used for hydrogenating phenol to cyclohexanone.
Abstract:
Disclosed is a hydroalkylation process in which the hydroalkylation catalyst is activated in the presence of a flowing fluid comprising hydrogen and a condensable agent. The presence of the condensable agent enables fast, effective activation of the hydroalkylation catalyst precursor in a cost-effective manner. It also yields superior catalyst performance.