Abstract:
A conductive member containing a base material and a conductive layer provided on the base material, wherein the conductive layer includes (i) a metallic nanowire having an average short-axis length of 150 nm or less and (ii) a binder, the binder including a three-dimensional crosslinked structure that includes a partial structure represented by the following Formula (Ia) and a partial structure represented by the following Formula (IIa) or Formula (IIb). In the Formulae, each of M1 and M2 independently represents an element selected from the group consisting of Si, Ti and Zr. Each R3 independently represents a hydrogen or a hydrocarbon group.
Abstract:
A capacitance type touch panel includes: an insulating layer; a plurality of electrode portions; a plurality of lead-out wiring portions; a transparent resin layer; and a substrate disposed on the transparent resin layer, wherein at least on the surface of the peripheral edge of the transparent resin layer exposed between the insulating layer and the substrate and on the exposed surface of the lead-out wiring portions, a sealing layer is disposed, and the sealing layer has a moisture vapor transmittance equal to or less than 20 g/m2/24 h/atm (25° C., 90% RH, 25 μm), and has a thickness equal to or greater than 1.0 μm.
Abstract:
Provided are a transparent base material film laminate that is used by being arranged on the viewing side of a polarizing plate of an image display device having a backlight light source and the polarizing plate, the laminate having a first transparent base material film and a second transparent base material film, in which a Re of the first transparent base material film is 4,000 nm or more, the laminate is arranged for use such that an angle formed between a slow axis of the first transparent base material film and an absorption axis of the polarizing plate is 45°±20° and such that an angle formed between a slow axis of the second transparent base material film and the absorption axis of the polarizing plate is 90°±30° or 0°±30°, an angle formed between the slow axes of the first transparent base material film and the second transparent base material film is neither 0° nor 90°, and the second transparent base material film is used by being arranged on the viewing side with respect to the first transparent base material film.
Abstract:
A composition for forming a silver ion diffusion-suppressing layer includes an insulating resin and a compound including: a structure selected from the group consisting of a triazole structure, a thiadiazole structure and a benzimidazole structure; a mercapto group; and at least one hydrocarbon group optionally containing a heteroatom, with the total number of carbon atoms in the hydrocarbon group or groups being 5 or more. The composition for forming a silver ion diffusion-suppressing layer allows formation of a silver ion diffusion-suppressing layer capable of suppressing silver ion migration between metal interconnects containing silver or a silver alloy to improve the reliability on the insulation between the metal interconnects.
Abstract:
A touch panel having an input region and an outside region positioned outside the input region includes at least: a substrate; detection electrodes disposed on the substrate corresponding to the input region; lead-out wirings which are disposed on the substrate corresponding to the outside region and are electrically connected to the detection electrodes; and a protective layer disposed on the substrate corresponding to the outside region so as to cover the lead-out wirings. The protective layer is formed by using an epoxy resin, and the lead-out wirings contain metal silver and gelatin. In the touch panel, the occurrence of ion migration between lead-out wirings is further inhibited.
Abstract:
A conductive member including: a base material; and a conductive layer disposed on the base material, wherein the conductive layer includes: a metal nanowire including a metal element (a) and having an average minor axis length of 150 nm or less; and a sol-gel cured product obtained by hydrolyzing and polycondensing an alkoxide compound of an element (b) selected from the group consisting of Si, Ti, Zr, and Al; and a ratio of the substance amount of the element (b) contained in the conductive layer to the substance amount of the metal element (a) contained in the conductive layer is in a range of from 0.10/1 to 22/1.
Abstract:
An electroconductive layer-transferring material including: a base material; a cushion layer on the base material; and an electroconductive layer on the cushion layer, the electroconductive layer containing metal nanowires having an average minor axis length of 100 nm or less and an average major axis length of 2 μm or more, wherein the electroconductive layer-transferring material satisfies A/B=0.1 to 0.7, where A is a total thickness of an average thickness of the electroconductive layer and an average thickness of the cushion layer, and B is an average thickness of the base material, wherein the average thickness of the electroconductive layer is 0.01 μm to 0.2 μm, and wherein the average thickness of the cushion layer is 1 μm to 50 μm.
Abstract translation:一种导电层转移材料,包括:基材; 基材上的缓冲层; 以及在缓冲层上的导电层,所述导电层含有平均短轴长度为100nm以下且平均长轴长度为2μm以上的金属纳米线,其中,所述导电性层转印材料满足A / B = 0.1〜0.7,其中A是导电层的平均厚度和缓冲层的平均厚度的总厚度,B是基材的平均厚度,其中导电层的平均厚度为0.01μm至 0.2μm,其中缓冲层的平均厚度为1〜50μm。