摘要:
TAL cell biocatalyst was immobilized in alginate cross-linked beads using low concentrations of glutaraldehyde. The biocatalyst beads have highly stable TAL activity and mechanical strength such that they withstand prolonged recycling in production of pHCA.
摘要:
TAL cell biocatalyst was immobilized in alginate cross-linked beads using low concentrations of glutaraldehyde. The biocatalyst beads have highly stable TAL activity and mechanical strength such that they withstand prolonged recycling in production of pHCA.
摘要:
An enteric bacterial strain was engineered to over-produce L-tyrosine using a one-step method. The pheA-tyrA chromosomal region of the bacterial genome was replaced with an engineered chromosomal segment, resulting in inactivation of the pheA coding region and strong expression of the tyrA coding region, resulting in high levels of L-tyrosine production.
摘要:
The invention provides methods of increasing the production of aromatic carboxylic acids from a host cell via manipulation of the yhcRQP operon encoding a family of efflux proteins. Up-regulation of all or a sub-set of the genes in the yhcRQP were additionally found to enhance tolerance to aromatic carboxylic acids toxicity.
摘要:
An enteric bacterial strain was engineered to over-produce L-tyrosine using a one-step method. The pheA-tyrA chromosomal region of the bacterial genome was replaced with an engineered chromosomal segment, resulting in inactivation of the pheA coding region and strong expression of the tyrA coding region, resulting in high levels of L-tyrosine production.
摘要:
Increasing tolerance to butanol in yeast has been accomplished by decreasing activity of Pdr5p encoded by an endogenous PDR5 gene. A deletion mutation of the PDR5 gene led to improved growth yield in the presence of butanol. Yeast cells with reduced Pdr5p activity, or other multidrug resistance ATP-binding cassette transporter protein activity encoded by CDR1 or BFR1, and a butanol biosynthetic pathway may be used for improved butanol production.
摘要:
Recombinant bacteria capable of metabolizing sucrose are described. The recombinant bacteria comprise in their genome or on at least one recombinant construct: a nucleotide sequence from Bacillus licheniformis ATCC® 14580 encoding a polypeptide having sucrose transporter activity and a nucleotide sequence from Bacillus licheniformis ATCC® 14580 encoding a polypeptide having sucrose hydrolase activity. These nucleotide sequences are each operably linked to the same or a different promoter. Recombinant bacteria capable of metabolizing sucrose to produce glycerol and/or glycerol-derived products such as 1,3-propanediol and 3-hydroxypropionic acid are also described.
摘要:
Screening of fatty acid fed bacteria which are not natural butanol producers identified increased membrane cyclopropane fatty acid as providing improved butanol tolerance. Increasing expression of cyclopropane fatty acid synthase in the presence of the enzyme substrate that is either endogenous to the cell or fed to the cell, increased butanol tolerance. Bacterial strains with increased cyclopropane fatty acid synthase and having a butanol biosynthetic pathway are useful for production of butanol.
摘要:
A method for the production of 1-butanol by fermentation using a microbial production host is disclosed. The method employs a reduction in temperature during the fermentation process that results in a more robust tolerance of the production host to the butanol product.
摘要:
The present invention provides a microorganism useful for biologically producing 3-hydroxypropionic acid from a fermentable carbon source. Further, the microorganism comprises disruptions in specified genes and alterations in the expression levels of specified genes that are useful in a higher yielding process to produce 3-hydroxypropionic acid, compositions comprising renewably sourced 3-hydroxypropionic acid provided by said microorganism, and industrial relevant products made using such renewably sourced 3-hydroxypropionic acid.