Abstract:
A passivation glass coating composition is provided for forming a fired passivation glass layer on a semiconductor substrate having p-n junction. The passivation glass coating composition includes a glass component that is lead free, cadmium free, alkali metal oxides free, and colored transition metal oxides (i.e. metal oxides of V, Fe, Co, Ni, Cr, Cu, Mn) free. The glass component includes bismuth based glasses, and provides a firing temperature range of 500° C. to 900° C., and controlled devitrification. Once fired to a semiconductor device, the fired passivation glass layer provides exceptional device performance including no cracking of the fired passivation glass layer, excellent thermal expansion matching to silicon, good chemical resistance to acid and base, and improved device performance.
Abstract:
LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
Abstract:
The glass composites include glass frit, that when sintered produce a phosphor-containing layer, suitable for use in optical applications. The glass composites can include a crystallizing glass frit, such that phosphor crystals precipitate from the frit composite during sintering, or can include a non-crystallizing glass composition, such that phosphor is added to the frit composite before sintering. The sintering temperatures of the glass are relatively low so that fluorescence of the phosphors will not substantially degrade during sintering. The resulting phosphor-containing layer can be used in various optical applications including those for converting blue light into various color temperatures of white light.
Abstract:
The present subject matter provides for a multi-layer conductive trace. The trace can be formed by digital printing the individual layers and firing. The individual layers each impart functional characteristics to the conductive trace and each layer has components that can be adjusted to affect the performance characteristics of that particular layer without detrimentally affecting the performance characteristics of the remaining layers.
Abstract:
A frit-based hermetic sealing system for sealing glass plates to one another, or sealing glass to ceramics is disclosed. Seal materials, the methods to apply these seal materials, and the seal designs for selective and controlled absorption of microwave energy to heat and seal the system are presented. The hermetic seals are useful in various applications such as (a) encapsulating solar cells based on silicon, organic systems, and thin film, (b) encapsulating other electronic devices such as organic LEDs, (c) producing Vacuum Insulated Glass windows, and (d) architectural windows and automotive glass.
Abstract:
Broadband infrared radiation is used to heat and fuse an enamel paste to form an enamel seal between at least two solid substrates such as glass, ceramic or metal.
Abstract:
The present invention describes a new method for creating hybrid edge seals using metal, alloy, powder coated metal and other conductive surfaces in between two substrates. The methods utilize various materials, seal designs, and geometries of hybrid seals based on polymeric powder coatings and glass powder coatings.
Abstract:
A marking composition for forming marks or indicia on a substrate is provided for laser marking applications. The composition includes a glass frit, a carrier, and absorber particles. The glass frit includes alkali metal oxides, glass forming oxides, and one or more transition metal oxides. The glass frit is devoid of at least one of bismuth and zinc.
Abstract:
A sintered machinable glass-ceramic is provided. The machinable glass-ceramic is formed by mixing phyllosilicate material having a sheet structure, with a glass fit and firing the mixture at relatively low temperatures to sinter the phyllosilicate, while maintaining the sheet-like morphology of the phyllosilicate and its associated cleaving properties. The sintered machinable glass-ceramic can be machined with conventional metal working tools and includes the electrical properties of the phyllosilicate. Producing the sintered machinable glass-ceramic does not require the relatively high-temperature bulk nucleation and crystallization needed to form sheet phyllosilicate phases in situ.
Abstract:
The present invention describes a new method for creating hybrid edge seals using metal, alloy, powder coated metal and other conductive surfaces in between two substrates. The methods utilize various materials, seal designs, and geometries of hybrid seals based on polymeric powder coatings and glass powder coatings.