Air-fuel ratio control system for internal combustion engine
    1.
    发明授权
    Air-fuel ratio control system for internal combustion engine 失效
    内燃机空燃比控制系统

    公开(公告)号:US5623824A

    公开(公告)日:1997-04-29

    申请号:US198395

    申请日:1994-02-18

    IPC分类号: F02D41/14 F02D41/34 F01N3/28

    CPC分类号: F02D41/1408 Y02T10/22

    摘要: An air-fuel ratio control system for an automotive internal combustion engine provided with a three-way catalytic converter disposed in an exhaust gas passageway of the engine. The air-fuel ratio control system is comprised of an oxygen sensor disposed in the exhaust gas passageway downstream of the catalytic converter. The air-fuel ratio of air-fuel mixture to be supplied to the engine is controlled toward a stoichiometric value to cause the three-way catalytic converter to efficiently work under the action of a control unit including a microcomputer. In the control unit, a control constant is set in accordance with the output voltage of the oxygen sensor, and a cycle signal (pulse signal) is cyclically generated. The control constant is compulsorily minutely vibrated under the action of the cycle signal, thereby obtaining an air-fuel ratio correction coefficient. The amount of fuel to be supplied to the engine is calculated in accordance with the air-fuel ratio correction coefficient and injected from a fuel injector valve.

    摘要翻译: 一种用于汽车内燃机的空燃比控制系统,其设置有设置在发动机的废气通道中的三元催化转化器。 空燃比控制系统由设置在催化转化器下游的废气通道中的氧传感器构成。 向发动机供给的空气燃料混合物的空燃比被控制为化学计量值,使得三元催化转化器在包括微型计算机的控制单元的作用下有效地工作。 在控制单元中,根据氧传感器的输出电压来设定控制常数,并循环地产生周期信号(脉冲信号)。 控制常数在循环信号的作用下强制微小地振动,从而获得空燃比校正系数。 根据空燃比校正系数计算供给发动机的燃料量,并从燃料喷射阀喷射。

    Gas analyzing apparatus
    4.
    发明授权
    Gas analyzing apparatus 失效
    气体分析仪

    公开(公告)号:US06397660B1

    公开(公告)日:2002-06-04

    申请号:US09774730

    申请日:2001-01-31

    IPC分类号: G01N3004

    摘要: There is provided a gas analyzing apparatus capable of minimizing gas remaining by integrating gas switching apparatuses into one and capable of analyzing impurities of ppb level to sub-ppb level contained in various kinds of high-purity gases efficiently and accurately. The gas analyzing apparatus comprises an analyzer introduction passage 22 for introducing a sample gas supplied from a sample gas source 11 into an analyzer 12 via an analyzer introduction valve 22V; a separator introduction passage 23 diverging from a first side passage of the analyzer introduction valve 22V for introducing a sample gas into a separator 13 via a separator introduction valve 23V; a separator flowing out passage 24 for introducing the sample gas flowing out from the separator 13 into a second side passage of the analyzer introduction valve 22V via a separator flowing-out valve 24V; and a gas switching apparatus to be such formed that when the analyzer introduction valve 22V is opened, the separator introduction valve 23V and the separator flowing-out valve 24V are connectively operated to be closed, and when the analyzer introduction valve 22V is closed, the separator introduction valve 23V and the separator flowing-out valve 24V are connectively operated to be opened.

    摘要翻译: 提供一种气体分析装置,其能够通过将气体切换装置集成为一体而使气体残留最小化,并且能够高效且准确地分析各种高纯度气体中所含的ppb等级和亚ppb等级的杂质。 气体分析装置包括分析器引入通道22,用于经由分析器引入阀22V将从样品气体源11供给的样品气体引入分析器12; 从分析器引入阀22V的第一侧通道分离出的分离器引入通道23,用于经由分离器引入阀23V将样品气体引入隔板13; 分离器流出通道24,用于将从分离器13流出的样品气体经由分离器流出阀24V引入分析器导入阀22V的第二侧通道; 以及气体切换装置,其形成为当分析器导入阀22V打开时,分离器导入阀23V和分离器流出阀24V连接动作关闭,当分析器导入阀22V关闭时, 分离器引入阀23V和分离器流出阀24V被连接操作以打开。

    Start-up control of direct injection engine
    5.
    发明授权
    Start-up control of direct injection engine 失效
    直喷发动机起动控制

    公开(公告)号:US06892694B2

    公开(公告)日:2005-05-17

    申请号:US10885030

    申请日:2004-07-07

    摘要: A start-up control device of a direct injection engine has a fuel injector (76) for injecting fuel into the engine; and a controller. The controller is programmed to determine the presence of a learned value for calculating on the basis thereof a fuel injection amount during start-up of the engine (10) by means of a stratified charge combustion operation; calculate the fuel injection amount on the basis of the learned value when the learned value is present, and control the fuel injector (76) to inject fuel in the compression stroke to start up the engine (10) by means of a stratified charge combustion operation; and control the fuel injector (76) to inject fuel in the intake stroke of the engine to start up the engine by means of a homogeneous combustion operation when the learned value is absent, and obtain and store the learned value during the homogeneous combustion operation of the engine.

    摘要翻译: 直喷式发动机的启动控制装置具有用于将燃料喷射到发动机中的燃料喷射器(76) 和控制器。 控制器被编程以确定学习值的存在,以基于其计算通过分层充气燃烧操作在发动机(10)启动期间的燃料喷射量; 在学习值存在时基于学习值计算燃料喷射量,并且控制燃料喷射器(76)在压缩冲程中喷射燃料,以通过分层充气燃烧操作启动发动机(10) ; 并且在所述学习值不存在的情况下,控制所述燃料喷射器(76)在所述发动机的进气冲程中喷射燃料,以通过均匀燃烧运转来起动所述发动机,并且在所述均质燃烧运行期间获得和存储所述学习值 引擎。

    PROCESS FOR PRODUCING LITHIUM VANADIUM PHOSPHATE-CARBON COMPOSITE
    7.
    发明申请
    PROCESS FOR PRODUCING LITHIUM VANADIUM PHOSPHATE-CARBON COMPOSITE 有权
    用于生产磷酸氢钙 - 碳复合材料的方法

    公开(公告)号:US20130214462A1

    公开(公告)日:2013-08-22

    申请号:US13823612

    申请日:2011-09-22

    IPC分类号: H01M4/1397

    摘要: A process for producing a lithium vanadium phosphate-carbon composite includes a first step that includes mixing a lithium source, a tetravalent or pentavalent vanadium compound, a phosphorus source, and a conductive carbon material source that produces carbon through pyrolysis, in an aqueous solvent to prepare a raw material mixture, a second step that includes heating the raw material mixture to effect a precipitation reaction to obtain a reaction mixture that includes a precipitate, a third step that includes subjecting the reaction mixture that includes the precipitate to wet grinding using a media mill to obtain a slurry that includes ground particles, a fourth step that includes spray-drying the slurry that includes the ground particles to obtain a reaction precursor, and a fifth step that includes calcining the reaction precursor at 600 to 1300° C. in an inert gas atmosphere or a reducing atmosphere. A lithium vanadium phosphate-carbon composite produced by the process may provide a lithium secondary battery with excellent battery performance (e.g., high discharge capacity) when used as a cathode active material.

    摘要翻译: 一种制备锂钒磷酸盐 - 碳复合材料的方法包括第一步骤,其包括在水性溶剂中将锂源,四价或五价钒化合物,磷源和通过热解产生碳的导电碳材料源混合至 制备原料混合物,第二步骤包括加热原料混合物进行沉淀反应以获得包含沉淀物的反应混合物,第三步骤包括使用介质对含有沉淀物的反应混合物进行湿磨研磨 研磨以获得包括研磨颗粒的浆料,第四步骤包括喷雾干燥包含研磨颗粒的浆料以获得反应前体,第五步包括在600至1300℃下煅烧反应前体, 惰性气体气氛或还原气氛。 通过该方法生产的锂钒磷酸铁复合物可以提供当用作阴极活性材料时具有优异的电池性能(例如,高放电容量)的锂二次电池。

    Refrigeration unit using ammonia
    10.
    发明申请

    公开(公告)号:US20050138947A1

    公开(公告)日:2005-06-30

    申请号:US10747253

    申请日:2003-12-30

    摘要: A refrigeration unit using ammonia aimed to reduce the amount of charged ammonia, and to establish a measure to render leaked ammonia gas harmless, is provided. The ammonia chiller unit comprises a compressor, a compressor driving motor, an evaporation type condenser, an expansion valve, an evaporator to perform refrigerating cycle using ammonia as a refrigerant. The unit is composed of a lower construction body comprising a compressor, a motor for driving the compressor, a control board, a brine cooler to function as an evaporator, a brine pump, a water tank, a sprinkler pump, etc., and an upper construction body comprising a drain pan and an evaporation type condenser located above the drain pan. The evaporation type condenser is composed of a multitubular heat exchanger having at both end sides an inlet and outlet headers, ammonia refrigerant flowing in one direction, and the multitubular heat exchanger is incline downward from the inlet side toward the evaporator.