摘要:
A method for forming a trenched DMOS transistor with deep body regions that occupy minimal area on an epitaxial layer formed on a semiconductor substrate. A first oxide layer is formed over the epitaxial layer and patterned to define deep-body areas beneath which the deep body regions are to be formed. Next, diffusion-inhibiting regions of the first conductivity type are formed in each of the deep-body areas before forming a second oxide layer covering the deep-body areas and the remaining portion of the first oxide layer. Portions of the second oxide layer are then removed to expose the centers of the diffusion inhibiting regions, leaving the first oxide layer and oxide sidewall spacers from the second oxide layer to cover the peripheries of the diffusion-inhibiting regions. A deep-body diffusion of a second conductivity type is then performed, resulting in the formation of deep body regions in the epitaxial layer between the sidewall spacers. The peripheries of the diffusion-inhibiting regions covered by the remaining portions of the first and second oxide layers inhibit lateral diffusion of the deep body diffusions without significantly inhibiting diffusion depth.
摘要:
An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The passivation layer is a CVD diamond film which provides both electrical insulation and thermal conductivity. The substrate backside surface is removed (by grinding and/or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap. In a surface mount version, vias are etched through the substrate, with surface mount posts formed on the vias, to contact the frontside electrical contacts and provide all electrical contacts on the substrate backside surface. The wafer is then scribed into die in both versions without need for further packaging.
摘要:
An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The substrate backside surface is removed (by grinding or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap. In a surface mount version, vias are etched through the substrate, with surface mount posts formed on the vias, to contact the frontside electrical contacts and provide all electrical contacts on the substrate backside surface. The wafer is then scribed into die in both versions without need for further packaging.
摘要:
An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The substrate backside surface is removed (by grinding or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap. In a surface mount version, vias are etched through the substrate, with surface mount posts formed on the vias, to contact the frontside electrical contacts and provide all electrical contacts on the substrate backside surface. The wafer is then scribed into die in both versions without need for further packaging.
摘要:
A method for forming a microelectronic layer. There is first provided a substrate. There is then formed over the substrate the microelectronic layer while employing a plasma enhanced chemical vapor deposition (PECVD) method employing a source material gas and a carrier gas, wherein there is employed a sufficiently low plasma power, a sufficiently low source material gas:carrier gas flow rate ratio and a sufficiently high carrier gas atomic mass such that the microelectronic layer is formed with enhanced film thickness uniformity. The method may be employed for forming ion implant screen layers, such as silicon oxide ion implant screen layers, with enhanced film thickness uniformity.
摘要:
A CMP process is provided for the reduction of tungsten damascene residue and the elimination of surface scratch within the surface that is being polished. A three step polishing procedure of the ILD is followed by a two step buffing procedure of the ILD. The three step polishing procedure reduces the device defect count by eliminating damascene residue from the polished surface. The two step buffing procedure reduces micro scratch within the polished surface thus improving device throughput. A two step buffing procedure is applied to the IMD. Oxide buffing is applied and consists of a three step polishing procedure followed by a two step buffing procedure.
摘要:
A semiconductor wafer having a double inter-metal dielectric layer formed in the gaps of and on closely. spaced metal interconnection circuitry. The double dielectric layer is formed by an in situ low temperature two step deposition HDP-CVD process separated by a cool-down period. The low temperature process mitigates metal line defects such as distortion or warping caused by heat generated during the process of filling gaps having aspect ratios greater than 2. The double dielectric layer is composed of Group IV materials, silicon being the preferred material. These double layers may be individually doped. Titanium nitride layers, present as by-products of seeding and anti-reflective coatings serve to reduce electro-migration of the metal circuitry.
摘要:
A method is described for improving the step coverage of tungsten interconnects and plugs when deposited at low temperatures into contact/via openings having high aspect ratios. The depositions are made at pressures between 4.5 and 100 Torr in a CVD tool. The method includes a first nucleation step, and a second step for filling the contact/via openings wherein deposition conditions favor good step coverage. For forming an interconnect and a third deposition step, providing moderate step coverage and low stress, is used to build up the interconnect. The high pressures permit deposition at practical rates at low temperatures. In addition the high pressures also permit application of backside gas pressure to the wafer during deposition, thereby improving the thermal contact between the wafer and the heated substrate holder. This contributes significantly to stress reduction and improved step coverage.
摘要:
Vertical type structures for integrated circuit inductors are disclosed. These vertical type inductors include the single-loop type, the parallel-loop type and the screw type, which form three different embodiments in the present invention. In the first embodiment, three-dimensional type structures, a single-loop type is utilized as an integrated circuit inductor. This inductor structure is formed on a substrate and the axis of the structure is upright to the substrate. In another embodiment according to the present invention, a parallel-loop type structure for radio frequency (RF) integrated circuit inductor is provided. A screw type structure according to this invention is the third embodiment. It features an axis that is parallel to the surface of the substrate and threads into the semiconductor device.
摘要:
This invention provides an in situ low temperature, two step deposition HDP-CVD process separated by a cooldown period, for forming an inter-metal dielectric passivation layer for an integrated circuit structure. Said process mitigating metal line defects such as distortion or warping caused by excessive heat generated during the etching/deposition process.