Abstract:
An apparatus for manufacturing membranes is provided, the apparatus comprises a casting section, a processing section and a conveyor system. The casting section prepares a membrane that is conveyed to the processing section. The conveyor system conveys the membrane through the processing section. In the processing section, the membrane is conditioned in tanks to extract residues. The membrane is also subjected to a leak test to detect physical flaws in the membrane. The leak test involves applying a dye to a surface of the membrane. Any dye that leaks through the membrane will provide a high contrast dye mark on an adjacent contrast material, which is indicative of a physical flaw in the membrane. A process for manufacturing and testing membranes is also provided. The process comprises the steps of casting a membrane precursor, curing the membrane precursor to form a membrane and processing the membrane.
Abstract:
A self-supported ion exchange membrane including a polymerized and crosslinked monomer, where the monomer includes: a least one ionic group, a polymerized group, and a silicate group; and a polymer chemically bonded to crosslinked monomer through the silicate group.
Abstract:
An apparatus for recovering acid includes: a cathode; an anode; a plurality of anion exchange membranes disposed between the cathode and the anode; a plurality of proton selective membranes alternately arranged with the plurality of anion exchange membranes; a plurality of first compartments for accommodating an aqueous stream comprising anions and protons; and a plurality of second compartments alternately arranged with the plurality of first compartments for accommodating a recovery stream receiving from the first compartments anions through the anion exchange membranes and mainly protons through the proton selective membranes. An associated method is also described.
Abstract:
An ion exchange membrane and a method of making it. The membrane may be used, for example, in an electrodialysis module or electrochemical cell. The membrane comprises an ion exchange polymer and inorganic particles preferably linked to the ion exchange polymer. To make a membrane, inorganic particles are mixed into an ion exchange membrane pre-cursor. A polymerization initiator or catalyst is then added and the resulting mixture is placed in a form and cured. The inorganic particles may comprise, for example, an oxidized form of graphite such as graphite oxide. The ion exchange polymer may comprise an ionic monomer, containing a quaternary ammonium group for anion exchange or a sulfonate group for cation exchange, along with a crosslinking co-monomer containing polymerizable diacrylic functionalities. The membrane is self-supporting and can be made without a supporting fabric.
Abstract:
A bipolar membrane electrodialysis method and system are described for purifying an organic acid from an aqueous solution containing the salt of the organic acid. The system includes a bipolar membrane electrodialysis stack that includes at least one three-compartment bipolar membrane electrodialysis cell and at least one two-compartment bipolar membrane electrodialysis cell. The method includes recirculating the solution of organic acid produced from the three-compartment bipolar membrane electrodialysis cell and two-compartment bipolar membrane electrodialysis cell. Cation or anion exchange resins may be included in the spacers of acid compartment to increase the conductivity of acid compartments, thereby increasing current density of the bipolar electrodialysis stack and decreasing power consumption.
Abstract:
An ion-exchange membrane is disclosed here including ion-permeable layers impregnated with an ion-exchange material and arranged in an order from one face of the membrane to the opposite face of the membrane such that opposing layers in the supporting membrane substrate provide sufficiently identical physical properties to substantially avoid irregular expansion when in a salt solution. The ion-permeable layers including at least one non-woven layer and at least one reinforcing layer.
Abstract:
A dip coating apparatus includes a sealed case assembly for containing at least one workpiece to be coated; an air pump communicated with the sealed case assembly, for pumping air from the sealed case assembly and injecting air into the sealed case assembly; and a coating solution container containing a coating solution and communicated with the sealed case assembly, for injecting the coating solution to the sealed case assembly and retrieving the coating solution from the sealed case assembly.
Abstract:
The present disclosure provides a polymerizing method where (i) an ionic crosslinker that includes a quaternary ammonium group and (ii) a non-ionic crosslinker, is polymerized in a reaction solution whose solvent is substantially a mixture of propylene glyocol (PG) and an aprotic amide-based solvent. The polymerization makes an anion-exchange polymer composition. The PG and the aprotic amide-based solvent are present in a weight ratio of from about 25:75 to about 70:30, and the reactants and solvents are present in amounts to generate the anion-exchange polymer composition with a theoretical water content from about 35% to about 60% (wt/wt).
Abstract:
An electrodialysis cell includes a housing defining an internal chamber, a core positioned within the internal chamber, a first electrode positioned in the internal chamber adjacent the housing, a second electrode coupled to the core and spaced from the first electrode, and a membrane assembly positioned between the first and second electrodes in a spiral wound configuration. The housing includes an inlet end for receiving a feed fluid and an outlet end in fluid communication with the inlet end. The membrane assembly includes a plurality of ion exchange membranes spaced from each other to define a plurality of fluid channels between the inlet and outlet ends.
Abstract:
This specification describes an ion exchange membrane and a method of making it. The membrane may be used, for example, in an electrodialysis module or electrochemical cell. The membrane comprises an ion exchange polymer and inorganic particles preferably linked to the ion exchange polymer. To make a membrane, inorganic particles are mixed into an ion exchange membrane pre-cursor. A polymerization initiator or catalyst is then added and the resulting mixture is placed in a form and cured. The inorganic particles may comprise, for example, an oxidized form of graphite such as graphite oxide. The ion exchange polymer may comprise an ionic monomer, containing a quaternary ammonium group for anion exchange or a sulfonate group for cation exchange, along with a crosslinking co-monomer containing polymerizable diacrylic functionalities. The membrane is self-supporting and can be made without a supporting fabric.