摘要:
Improved devices, methods, and systems for the surgical treatment of urinary incontinence generally enhance the support provided by the natural tissues of the pelvic floor without directly applying compressive pressure against the urethra. The invention provides probes for forming plications in the endopelvic fascia that are displaced laterally on either side of the midline. These probes can impose a predetermined level of trauma to the plicated tissues so as to promote the formation of adhesions. Adhesions can maintain the enhanced support provided by the plication after reabsorption of a temporary fastener (such as a reasborbable suture, staple, or the like). The plicating probe draws the tissue inward to provide a uniform plication within a predetermined size range.
摘要:
Improved devices, methods, and systems for the surgical treatment of urinary incontinence generally enhance the support provided by the natural tissues of the pelvic floor without directly applying compressive pressure against the urethra. The invention provides probes for forming plications in the endopelvic fascia that are displaced laterally on either side of the midline. These probes can impose a predetermined level of trauma to the plicated tissues so as to promote the formation of adhesions. Adhesions can maintain the enhanced support provided by the plication after reabsorption of a temporary fastener (such as a reabsorbable suture, staple, or the like). The plicating probe draws the tissue inward to provide a uniform plication within a predetermined size range.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenated support tissues, causing them to contract. The energy can be applied intermittently, often between a pair of large plate electrodes having cooled flat electrode surfaces, the electrodes optionally being supported by a clamp structure. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue, particularly where the electrode surfaces are cooled before, during, and after an intermittent heating cycle. Ideally, the plate electrode comprises an electrode array including discrete electrode surface segments so that the current flux can be varied to selectively target the fascia. Alternatively, chilled “liquid electrodes” may direct current through a selected portion of the bladder (or other body cavity) while also cooling the bladder wall, an insulating gas can prevent heating of an alternative bladder portion and the adjacent tissues, and/or ultrasound transducers direct energy through an intermediate tissue and into fascia with little or no injury to the intermediate tissue. Cooled electrodes may be used to chill an intermediate engaged tissue so as to cause the maximum temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenous tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenous support tissues, causing them to contract. Pre-cooling and/or pre-heating may induce a temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenated support tissues, causing them to contract. The energy can be applied intermittently, often between a pair of large plate electrodes having cooled flat electrode surfaces, the electrodes optionally being supported by a clamp structure. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue, particularly where the electrode surfaces are cooled before, during, and after an intermittent heating cycle. Ideally, the plate electrode comprises an electrode array including discrete electrode surface segments so that the current flux can be varied to selectively target the fascia. Alternatively, chilled “liquid electrodes” may direct current through a selected portion of the bladder (or other body cavity) while also cooling the bladder wall, an insulating gas can prevent heating of an alternative bladder portion and the adjacent tissues, and/or ultrasound transducers direct energy through an intermediate tissue and into fascia with little or no injury to the intermediate tissue. Cooled electrodes may be used to chill an intermediate engaged tissue so as to cause the maximum temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
The invention provides improved devices, methods, and systems for shrinking of collagenated tissues, particularly for treating urinary incontinence in a noninvasive manner by directing energy to a patient's own support tissues. This energy heats fascia and other collagenated support tissues, causing them to contract. The energy can be applied intermittently, often between a pair of large plate electrodes having cooled flat electrode surfaces, the electrodes optionally being supported by a clamp structure. Such cooled plate electrodes are capable of directing electrical energy through an intermediate tissue and into fascia while the cooled electrode surface prevents injury to the intermediate tissue, particularly where the electrode surfaces are cooled before, during, and after an intermittent heating cycle. Ideally, the plate electrode comprises an electrode array including discrete electrode surface segments so that the current flux can be varied to selectively target the fascia. Alternatively, chilled “liquid electrodes” may direct current through a selected portion of the bladder (or other body cavity) while also cooling the bladder wall, an insulating gas can prevent heating of an alternative bladder portion and the adjacent tissues, and/or ultrasound transducers direct energy through an intermediate tissue and into fascia with little or no injury to the intermediate tissue. Cooled electrodes may be used to chill an intermediate engaged tissue so as to cause the maximum temperature difference between the target tissue and the intermediate tissue prior to initiating RF heating. This allows the dimensions of tissue reaching the treatment temperature to be controlled and/or minimized, the dimensions of protected intermediate tissue to be maximized, and the like.
摘要:
A tissue electrode assembly includes a membrane configured to form an expandable, conformable body that is deployable in a patient. The assembly further includes a flexible circuit positioned on a surface of the membrane and comprising at least one base substrate layer, at least one insulating layer and at least one planar conducting layer. An electrically-conductive electrode covers at least a portion of the flexible circuit and a portion of the surface of the membrane not covered by the flexible circuit, wherein the electrically-conductive electrode is foldable upon itself with the membrane to a delivery conformation having a diameter suitable for minimally-invasive delivery of the assembly to the patient.
摘要:
A tissue electrode assembly includes a membrane configured to form an expandable, conformable body that is deployable in a patient. The assembly further includes a flexible circuit positioned on a surface of the membrane and comprising at least one base substrate layer, at least one insulating layer and at least one planar conducting layer. An electrically-conductive electrode covers at least a portion of the flexible circuit and a portion of the surface of the membrane not covered by the flexible circuit, wherein the electrically-conductive electrode is foldable upon itself with the membrane to a delivery conformation having a diameter suitable for minimally-invasive delivery of the assembly to the patient.
摘要:
An MR Spectroscopy (MRS) system and approach is provided for diagnosing painful and non-painful discs in chronic, severe low back pain patients (DDD-MRS). A DDD-MRS pulse sequence generates and acquires DDD-MRS spectra within intervertebral disc nuclei for later signal processing & diagnostic analysis. An interfacing DDD-MRS signal processor receives output signals of the DDD-MRS spectra acquired and is configured to optimize signal-to-noise ratio (SNR) by an automated system that selectively conducts optimal channel selection, phase and frequency correction, and frame editing as appropriate for a given acquisition series. A diagnostic processor calculates a diagnostic value for the disc based upon a weighted factor set of criteria that uses MRS data extracted from the acquired and processed MRS spectra along regions associated with multiple chemicals that have been correlated to painful vs. non-painful discs. A diagnostic display provides a scaled, color coded legend and indication of results for each disc analyzed as an overlay onto a mid-sagittal T2-weighted MRI image of the lumbar spine for the patient being diagnosed. Clinical application of the embodiments provides a non-invasive, objective, pain-free, reliable approach for diagnosing painful vs. non-painful discs by simply extending and enhancing the utility of otherwise standard MRI exams of the lumbar spine.
摘要:
A communication system using infrared energy to communicate control and data signals from a portable medical device to a remotely located display console. The portable medical device contains a battery for powering the infrared transmission and processing devices and also includes a battery parameter sensor to determine battery status, a temperature sensor, and manufacturing data concerning the portable medical device. Signals from the battery sensor and the temperature sensor are multiplexed with the control and data signals from the portable medical device for IR transmission. The control signals sent from the portable medical device may be used to program various functions of the remote console such as display parameters, console configuration and threshold levels. The display of the remote console presents information through a graphic display.