摘要:
A Central Processing Unit (CPU) debugging device and method therefor is disclosed which provides data entering and interrogating devices which will temporarily stop all CPU execution when desired by a user and allow a non-destructive intrusion into the contents of any of the CPU internal registers, state bits, and cache and local memories. After the desired CPU contents have been reviewed and subsequently altered or maintained by a user, the CPU execution may be resumed.
摘要:
A method for selectively controlling the operation of a computer system so that the computer system is selectively caused to execute instructions of a first predetermined bit length or instructions of a second predetermined bit length. The method comprises the preliminary steps of storing instruction data in a set of EVEN instruction storage locations; storing instruction data in a set of ODD instruction locations; establishing an EVEN execution pointer; and establishing an ODD execution pointer. At a first given time, either the EVEN execution pointer is incremented by a predetermined COUNT or the ODD execution pointer is incremented by the predetermined COUNT; but both pointers are not simultaneously incremented by the COUNT. The method causes an instruction to be executed, which instruction was stored entirely in either an EVEN instruction location or entirely in an ODD instruction location. At a second given time, both the EVEN instruction pointer and the ODD instruction pointer are incremented by the predetermined COUNT, thereby causing an instruction to be executed, which instruction constitutes a combination of instruction data from an EVEN instruction storage location and instruction data from an ODD instruction storage location.
摘要:
A memory subsystem for use between a CPU and a graphics controller in a typical small computer system has a cache interface for the CPU and a FIFO interface for the graphics controller. This configuration optimizes the data transfers for both the CPU and the graphics controller, and allows both to operate in a manner generally asynchronous to each other. This caching FIFO provides enhanced performance by matching the interface to the unique data requirements of the devices accessing the data within the caching FIFO. For the CPU, the caching FIFO appears as a normal data cache. For the graphics controller, the caching FIFO appears as a normal dual port FIFO, which optimizes the highly sequential data transfers characteristic of graphics controllers. The simple design of the caching FIFO provides maximum performance for a minimum of gates, making the circuit well-suited to efficient implementation in silicon.
摘要:
An off-hook state of a telephone associated with a computer is used in order to disable the power management unit of the computer to prevent premature power shutdown while the telephone is being used. A power-managed computer system includes a bus system, and a central processing unit coupled to the bus system. The central processing unit has a normal power mode and a power saving mode. A telephony interface coupled to the bus system has a port for coupling to a telephone system network. A power management unit is also coupled to the bus system and is responsive to bus system activity and to indicia of telephony interface activity. The power management unit causes the central processing unit to be in a power saving mode when both bus system activity and telephony interface activity are less than a predetermined level of activity. Additionally, the power management unit maintains the central processing unit in a power mode greater than the power saving mode when either the bus system activity or the telephony interface activity is greater than the predetermined level of activity. An off-hook signal is directly sampled from the modem and provided to activity detection logic within the power management unit. Alternatively, modem interface logic interprets any number of signals provided by the modem to deliver an off-hook signal to the power management unit. Alternatively, telephone interface software includes an off-hook identifier that records the off-hook state of the telephone and an enablement/disablement register in the power management unit is either set or reset. System or user activity is also emulated in order to indicate to the power management unit that activity is occurring within the computer.
摘要:
An I/O holdoff mechanism is used to compensate for I/O device inputs being fed through a latency introducing bus. A system includes one or more I/O devices connected through a serial bus to a controller device. Each I/O device includes at least one request pin which is connected to a peripheral device. A serializer in the I/O device responds to a voltage transition occurring on any request pin of the I/O device by forwarding, in a packet over the serial bus, an indicator. The indicator indicates a current voltage on the request pin of the I/O device on which the voltage transition occurred. The controller device includes a deserializer and a bus controller. The deserializer receives the first packet and outputs a signal which indicates a current value for the voltage on the indicated request pin. The deserializer includes a busy output which indicates when the deserializer is busy and when the deserializer is idle. The bus controller responds to a request from a host system for a current value on a first request pin of the I/O device by forwarding to the host system a current value for a voltage on the indicated request pin, as indicated by the deserializer, when the deserializer is not busy. When the deserializer is busy, the bus controller responds to the request from the host system for the current value on the first request pin of the I/O device by waiting for the deserializer to become idle. Upon the deserializer becoming idle, the bus controller forwards to the host system the current value for the voltage on the indicated request pin.
摘要:
A computing system encodes and emulates requests signals, such as DMA requests or interrupt requests. A first peripheral device is connected to a first request pin of a first input/output (I/O) device. When the first peripheral device asserts a first request signal on the first request pin, a serializer within the first I/O device generates a first packet. The serializer forwards the first packet to a serial out port of the first I/O device. The first packet identifies the type of request and the direction of the edge transition. The serial out port forwards the first packet to a serial in port of a controller device. Upon the serial in port receiving the first packet, an unserializer within the controller device asserts an emulated first request signal, the emulated first request signal being coupled to a first request controller within the controller device. When the first peripheral device de-asserts the first request signal on the first request pin of the first I/O device, the serializer generates a second packet. The second packet identifies the type of request and the direction of the edge transition. The serializer forwards the second packet to the serial out port of the first I/O device. The serial out port of the first I/O device forwards the second packet to the serial in port of the controller device. Upon the serial in port receiving the second packet, the unserializer within the request controller de-asserts the emulated first request signal. When the first peripheral device pulses the first request signal by quickly de-asserting and asserting the first request signal in quick succession, the second packet is sent, but not the first packet.
摘要:
A novel network architecture that integrates the functions of an Internet protocol (IP) router into a network processing unit (NPU) that resides in a host computer's chipset such that the host computer's resources are perceived as separate network appliances. The NPU appears logically separate from the host computer even though, in one embodiment, it is sharing the same chip.
摘要:
A novel network architecture that integrates the functions of an internet protocol (IP) router into a network processing unit (NPU) that resides in a host computer's chipset such that the host computer's resources are perceived as separate network appliances. The NPU appears logically separate from the host computer even though, in one embodiment, it is sharing the same chip.
摘要:
A compositing buffer having an adjustable size and configuration reduces complexity and size of a multimedia processor integrated circuit. The compositing buffer may be optimized for lower resolutions, thus reducing its overall size and complexity, while still providing support for higher resolutions which may be required to support a particular standard. A pixel mapping logic receives data indicating the number of lines per band and number of pixels per line, as well as color depth (or any two of these data) and correctly maps compositing RAM bank access requests to the correct pixel location. In a second embodiment of the present invention, the variable band size of the compositing buffer may allow for an external memory to be used for a compositing buffer, for example, a portion of the display memory (frame buffer). While such an embodiment may reduce overall bandwidth, the associated cost reduction may make such an apparatus appealing for low cost applications. Band size may be adjusted depending upon pixel resolution and depth. In a third embodiment of the present invention, band size may be varied within a frame depending upon the number of layers or the complexity of each image portion. Simple portions of an image, have few layers, may be rendered using wide bands, whereas complex areas may be rendered in narrower bands.
摘要:
A novel network architecture that integrates the functions of an internet protocol (IP) router into a network processing unit (NPU) that resides in a host computer's chipset such that the host computer's resources are perceived as separate network appliances. The NPU appears logically separate from the host computer even though, in one embodiment, it is sharing the same chip.