摘要:
A system and method for magnetically filtering an ion beam during an ion implantation into a workpiece is provided, wherein ions are emitted from an ion source and accelerated the ions away from the ion source to form an ion beam. The ion beam is mass analyzed by a mass analyzer, wherein ions are selected. The ion beam is then decelerated via a decelerator once the ion beam is mass-analyzed, and the ion beam is further magnetically filtered the ion beam downstream of the deceleration. The magnetic filtering is provided by a quadrapole magnetic energy filter, wherein a magnetic field is formed for intercepting the ions in the ion beam exiting the decelerator to selectively filter undesirable ions and fast neutrals.
摘要:
An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
摘要:
This invention relates to an ion beam monitoring arrangement for use in an ion implanter where it is desirable to monitor the flux and/or a cross-sectional profile of the ion beam used for implantation. It is often desirable to measure the flux and/or cross-sectional profile of an ion beam in an ion implanter in order to improve control of ion implantation of a semiconductor wafer or similar. The present invention describes adapting the wafer holder to allow such beam profiling to be performed. The substrate holder may be used progressively to occlude the ion beam from a downstream flux monitor or a flux monitor may be located on the wafer holder that is provided with a slit entrance aperture.
摘要:
This invention relates to an ion beam monitoring arrangement for use in an ion implanter where it is desirable to monitor the flux and/or a cross-sectional profile of the ion beam used for implantation. It is often desirable to measure the flux and/or cross-sectional profile of an ion beam in an ion implanter in order to improve control of ion implantation of a semiconductor wafer or similar. The present invention describes adapting the wafer holder to allow such beam profiling to be performed. The substrate holder may be used progressively to occlude the ion beam from a downstream flux monitor or a flux monitor may be located on the wafer holder that is provided with a slit entrance aperture.
摘要:
This invention relates to a method of measuring a property of an ion beam, for example an ion beam current profile or the emittance of an ion beam. A Faraday array comprising an array of ion beam current sensors is employed. The array can provide an ion beam current profile at the plane of the array. The Faraday array is also used in conjunction with an occluding element that may be moved through the ion beam upstream of the Faraday array, there obscuring varying portions of the ion beam from the Faraday array. Suitable manipulation of the signals from the Faraday allows the ion beam current profile to be determined for the plane of the occluding element, and also for the emittance of the ion beam at the plane of the occluding element to be determined.
摘要:
A system and method for magnetically filtering an ion beam during an ion implantation into a workpiece is provided, wherein ions are emitted from an ion source and accelerated the ions away from the ion source to form an ion beam. The ion beam is mass analyzed by a mass analyzer, wherein ions are selected. The ion beam is then decelerated via a decelerator once the ion beam is mass-analyzed, and the ion beam is further magnetically filtered the ion beam downstream of the deceleration. The magnetic filtering is provided by a quadrapole magnetic energy filter, wherein a magnetic field is formed for intercepting the ions in the ion beam exiting the decelerator to selectively filter undesirable ions and fast neutrals.
摘要:
This invention relates to a method of measuring a property of an ion beam, for example an ion beam current profile or the emittance of an ion beam. A Faraday array comprising an array of ion beam current sensors is employed. The array can provide an ion beam current profile at the plane of the array. The Faraday array is also used in conjunction with an occluding element that may be moved through the ion beam upstream of the Faraday array, there obscuring varying portions of the ion beam from the Faraday array. Suitable manipulation of the signals from the Faraday allows the ion beam current profile to be determined for the plane of the occluding element, and also for the emittance of the ion beam at the plane of the occluding element to be determined.
摘要:
An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
摘要:
Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
摘要:
Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.