Abstract:
A high density connector (10) includes a plastic housing (12) with covers (30, 38) hinged to a frame (14) and foldable thereagainst to compress a plurality of circuits (60, 67) fitted between the covers to engage and compress elastomeric members (46, 54) and be interconnected thereby through fasteners (76-82), clamping the assembly of circuits and housing together. Embodiments include having frame and cover hinged at the sides by hinges (36, 44) or at the ends by hinges (108, 116) and including integrally molded cover frame and hinges versions include interconnecting two or more boards from the same or opposite directions relative to the connector housing.
Abstract:
An electrical packaging system, preferably a fluorescent lamp assembly, includes an assembly (10) having a housing (12) with a planar base (14) carrying affixed thereto a flat, flexible circuit (50) with holes (52) exposing conductors (56). Spacially disposed components (28, 40) are affixed to the housing with terminals extending to bear against a resilient conductive member (38, 44) to interconnect components to the circuit. The conductive medium may be bonded to either the terminals or to the circuit to facilitate handling.
Abstract:
The disclosure teaches an electrical connector of the type for electrically interconnecting a powered device to a power supply, preferably with a surface mounting or abutting connection. The connector comprises an elongated housing having plural, axially oriented through holes of a first diameter, where each hole is adapted to snugly receive an electrical conductor to electrically interconnect the device to the power supply. The housing includes a like plurality of concentric recesses, one about each hole at one end face of the housing, where the diameter of the recess is greater than the first diameter. A conductor is provided within each through hole, where the end thereof is in communication with the recess. Further, means cooperating with the housing to fixedly secure said conductors within the through holes is provided. Finally, quantities of an electrically conductive gel is inserted into each recess extending between the conductor end to beyond the end face to form a conductive gel lead, whereby the housing may be mounted between the powered device and the power supply to effect an electrical interconnection therebetween.
Abstract:
A land grid array connector (10) includes a housing (20) and clamping lid (38) for interconnecting arrays of contact pads of a component (50) and the contact pads (14) of a circuit board (12) through a planar connector insert (50) having a plastic comb (51) with coil springs (72) threaded on teeth (54) of the comb and with plastic cross bars (60) threaded over the comb teeth to position the contact springs in rows compatible with the rows of contact pads. The cross bars and springs are alternated to define a planar structure with the springs on the centers to engage the pads of contacts when the insert is positioned within the connector and clamped to press the springs between the pads. A method of manufacture including the steps of assembly of comb, contact springs and cross bars and affixing the cross bars to the comb.
Abstract:
An electrical connector (20) includes a body (22) having cavities (24) adapted to receive the leads (18) of components such as displays (16) to be interconnected by circuit traces (28) carried on a film (26) on the surface of the body with contact arms (34, 36) formed in the trace material to engage the leads extended therethrough into the cavities (24) and provide an electrical and mechanical connection of the component.
Abstract:
The invention relates to an improved, high density electrical connector, such as a backplane connector, which utilizes a flexible film having circuitry thereon for interconnecting plural planar electronic devices, such as a daughter board to a mother board. The improvement is derived through the use of a flexible film enhanced for local compliance, and to the inclusion of a force distribution member. The enhanced flexible film comprises a composite of a thin, flexible, dielectric film having upper and lower surfaces, a thin layer of metal disposed along the lower surface, and a plurality of discrete metallic pads or traces along the upper surface. Improved local compliance is accomplished by the thin metal layer having plural through slots, by mechanical punching or laser cutting, where each slot is aligned between a pair of adjacent metallic pads or traces. By this arrangement, the composite has improved local compliance between adjacent metallic pads or traces. To further improve the electrical connection of this enhanced flexible film, a force distribution member, underlying and in contact with the flexible film is provided. The force distribution member comprises an elastomeric member adjacent a first surface of the flexible film composite, and a thin metal force integrator along a surface of the elastomeric member remote from the composite. The force distribution member, in turn, is urged against the flexible film composite by a coil spring, for example, as known in the art.
Abstract:
A coupling connector is disclosed that electrically interconnects conductors contained in components of modular systems such as modular wiring or strip lighting systems, or the like. The coupling connector includes a pair of connector ends interconnected by at least one conductor, the ends of which terminate in conductive gel. Each connector end is firmly attached to surfaces of the components to be interconnected so that the conductive gel contacts the conductors contained within the components where the conductors intersect the components surface. Moisture resistant seals are arranged to seal the areas of contact from the elements. A cover is provided which is removably attached to the two connector ends to provide a relatively rigid structure. The cover is removable to provide access for disassembling the coupling connector.
Abstract:
An apparatus (25) and method for loading elliptically cross-sectioned canted contact springs (11) on to respective rows of U-shaped tabs (18) lanced out of a continuous strip (17) of relatively-thin flexible material.
Abstract:
A method of manufacturing produces a plurality of contact terminals (26) in a continuous, uninterrupted strip form. The method comprises the steps of: stamping a contact electrical terminal (26) from conductive material having certain desired spring characteristics, so that the contact terminal (26) has a spring end (30) and a crimp end (34) having a crimp opening (42) therein, crimping the contact terminal crimp end (34) onto a continuous length of electrically insulating material (66), and repeating the above steps until a plurality of spaced apart contact terminals (26) is provided in a continuous, uninterrupted strip.
Abstract:
A high density interconnection system (2) is configured to provide a reliable interconnection between boards (4, 6). In order to accommodate space restrictions, the circuit boards (4, 6) are placed in a three-dimensional arrangement. The electrical interconnections between boards (4, 6) are provided by electrical connectors (10) rather than by a mother board. The use of electrical connectors (10) enables the signal paths length between the boards to be minimized, thereby allowing for high speed signal transmission.