摘要:
A system for precisely positioning and moving a platform relative to a support structure is disclosed herein. The platform is particularly suitable for carrying wafers. Charged particle optics can be attached to the support structure. The platform positioning system comprises a stage, comprising a base, a platform and stage actuators, the stage actuators being coupled to the platform and the platform being coupled to the base; a frame attached to the base; a support structure mechanically coupled to the frame; stage sensors attached to the support structure, for sensing the position of the platform relative to the support structure; and a current control system coupled to the stage sensors and the stage actuators. The current control system may include a predictor for generating an ouptut signal anticipating the actual position of the platform relative to the support structure in real time.
摘要:
An ultra-high precision stage incorporating a novel, legged design suitable for applications requiring high voltage and vacuum is disclosed herein. The stage comprises: a base; a frame attached to the base; a platform with a bottom platform surface; at least three adjustable limbs coupled to the base and the bottom platform surface, each limb comprising a raising member attached to the base, a first attachment member attached to the raising member, a leg, a bottom end of the leg attached to the first attachment member, a second attachment member attached to a top end of the leg and the second attachment member attached to the bottom platform surface; and platform movement members coupled to the platform and the frame, providing precise positioning and movement of the platform. The attachment members can be flexure joints; further, they can be flexural thrust joints. The platform can have six degrees of freedom of movement and accommodate wafers with diameters of 300 mm. The stage can weigh less than 100 lbs.
摘要:
A stage assembly (10) for moving and positioning a device (26) includes a device table (20), a device holder (24) that retains the device (26), and a stage mover assembly (14). The stage assembly (10) includes one or more features that can isolate the device holder 24 and the device (26) from deformation. In some embodiments, the stage assembly (10) allows precise rotation of the device (26) between a first position (42) and a second position (44) without influencing the flatness of the device (26) and without deflecting and distorting the device (26). For example, the stage assembly (10) can include a carrier (60) and a holder connector assembly (62). The carrier (60) is supported above the device table (20) and rotates relative to the device table (20). The holder connector assembly (62) connects the device holder (24) to the carrier (60). Further, the stage assembly (10) can include a holder mover (120) that rotates the device holder (24) relative to the device table (20). Additionally, the stage assembly (10) can include a fluid connector (94) that connects the device holder (24) in fluid communication with the device table (20).
摘要:
An inspection system and method are disclosed. The inspection system is configured to inspect a projection unit having multiple optical subsystems. The optical subsystems are configured to project an image during a lithography step. The inspection system provides self calibration by measuring both a test mask and the aerial image of the test mask with the same detector assembly. The inspection system is also capable of measuring multiple fields simultaneously using multiple detectors and 6 axis interferometry to accurately determine the position of each detector. Additionally, the inspection system is capable of measuring the distance between the test mask and the detector assembly with an indirect path around the projection unit which normally blocks the direct path.
摘要:
A guided stage mechanism suitable for supporting a reticle in a photolithography machine includes a stage movable in the X-Y directions on a base. Laterally surrounding the stage is a rectangular window frame guide which is driven in the X-axis direction on two fixed guides by means of motor coils on the window frame guide co-operating with magnetic tracks fixed on the base. The stage is driven inside the window frame guide in the Y-axis direction by motor coils located on the stage co-operating with magnetic tracks located on the window frame guide. Forces from the drive motors of both the window frame guide and the stage are transmitted through the center of gravity of the stage, thereby eliminating unwanted moments of inertia. Additionally, reaction forces caused by the drive motors are isolated from the projection lens and the alignment portions of the photolithography machine. This isolation is accomplished by providing a mechanical support for the stage independent of the support for its window frame guide. The window frame guide is a hinged structure capable of a slight yawing (rotational) motion due to hinged flexures which connect the window frame guide members.
摘要:
A two-axis stage assembly includes a generally planar horizontally mounted base plate; a stage plate generally parallel to the base plate, the stage plate having a first axis and second orthogonal axis; a set of spaced bearings depending from a bottom surface of said stage plate, the bearings each having an arcuate bottom surface in rocking contact with a facing support surface of the base plate; a joint attached to the bottom surface of the stage plate and pivotably mounting each bearing, the joint being positioned at the center of curvature of the arcuate bottom surface of the associated bearing; and where an axial movement of the stage plate rocks the bearing arcuate bottom surfaces with respect to the facing support surface of the base plate.
摘要:
The apparatus forms one-to-one reticle images on a wafer. The apparatus includes means for holding a reticle containing an image pattern corresponding to the size of the desired wafer pattern. An illumination system substantially uniformly illuminates the reticle pattern. A one-to-one stationary projection optical system projects an image of the reticle pattern onto a predetermined focal plane. Suitable means such as a vacuum chuck holds the wafer. An alignment system steps and orients a wafer chuck to register markings on the individual dies of the wafer with the projected image of corresponding markings on the reticle. A fluid servo system acts on the chuck to hold at least a portion of the wafer in the predetermined focal plane of the projection optical system.
摘要:
A projection optical device includes a projection optical system which projects an image of a pattern, a support member attached to the projection optical system, and a plurality of coupling members connected to the support member. The coupling members suspend and support the projection optical system through the support member from an upper direction of the support member. The projection optical device can include a frame to which one end of each of the coupling members is attached, such that the projection optical system hangs from the frame via the support member and the coupling members. A projection optical device also can include a liquid supply which supplies a temperature-controlled liquid to a side surface of a projection optical system utilizing gravity to cause the temperature-controlled liquid to flow along the side surface of the projection optical system.
摘要:
A stage assembly (10) for moving and positioning a device (26) includes a device table (20), a device holder (24) that retains the device (26), and a stage mover assembly (14). The stage assembly (10) includes one or more features that can isolate the device holder 24 and the device (26) from deformation. In some embodiments, the stage assembly (10) allows precise rotation of the device (26) between a first position (42) and a second position (44) without influencing the flatness of the device (26) and without deflecting and distorting the device (26). For example, the stage assembly (10) can include a carrier (60) and a holder connector assembly (62). The carrier (60) is supported above the device table (20) and rotates relative to the device table (20). The holder connector assembly (62) connects the device holder (24) to the carrier (60). Further, the stage assembly (10) can include a holder mover (120) that rotates the device holder (24) relative to the device table (20). Additionally, the stage assembly (10) can include a fluid connector (94) that connects the device holder (24) in fluid communication with the device table (20).
摘要:
A guided stage mechanism suitable for supporting a reticle in a photolithography machine includes a stage movable in the X-Y directions on a base. Laterally surrounding the stage is a rectangular window frame guide which is driven in the X-axis direction on two fixed guides by means of motor coils on the window frame guide co-operating with magnetic tracks fixed on the base. The stage is driven inside the window frame guide in the Y-axis direction by motor coils located on the stage co-operating with magnetic tracks located on the window frame guide. Forces from the drive motors of both the window frame guide and the stage are transmitted through the center of gravity of the stage, thereby eliminating unwanted moments of inertia. Additionally, reaction forces caused by the drive motors are isolated from the projection lens and the alignment portions of the photolithography machine. This isolation is accomplished by providing a mechanical support for the stage independent of the support for its window frame guide. The window frame guide is a hinged structure capable of a slight yawing (rotational) motion due to hinged flexures which connect the window frame guide members.